Key Stakeholder Summary Document 19/05/2020

This document summarises the results of an internal workshop held by the project team in late April 2020. It has been put together to provide a simple table of proposed options to take forward to the next phase of investigation. Option backing documents highlight treatment and discharge scenarios that have been discounted, in order to get to the table below (note biosolid re-use options are to be investigated further also). The scoring methodology (traffic lights) is a necessary step to narrow down investigation focus. The project team think that we have the balance right to present pro's and con's of each, once greater analysis is undertaken.

The image below shows next steps in aplication preparation, which is working toward a single option. Options taken through at this point will have more intensive consultation/costing/investigation undertaken upon them. A key outcome that the project team would be keen to understand now is:

- (A) Is there general satisfaction with the options proposed to go forward, shown in tables below;
- (B) Will gaining knowledge on Deep Bore Injection potential enhance the project? This discharge method has been raised as part of past application discussions, but hasn't been investigated intensly (i.e. exploratory bore holes of significant depth haven't been undertaken). The project team will take direction from all to understand if this could be a Raglan solution from a community perspective - knowledge of this position will be very useful for the applicant; and
- (C) If project objectives (Appendix A) can be broadly accepted by the community;

Lets discuss

	Application Methodology	
•	Theoretic and realistic discharge and treatment scenarios are shown in the table below	
•	There are 48 methods within this widened group, which is to be narrowed down to a focussed group (five options) by way of a traffic light system that:	_
· · · · · · ·	 Balances categories against project goals (i.e. cultural/community categories considered show 'red' for any marine option – which is a clear position received from all) We are here 	
· • • • •	This allows concentrated investigation toward project goals, where a preferred option that is the best practical option (BPO) (RMA terms)]
•	Stakeholder and Iwi Action Preferred Option (BPO)	
	Review of Draft Analysis prior to finalisation	
•	(April) (MCA) (traffic light)	
Tre	tment Discharge	
•	 Avisting ponds & UV Marine (existing or new outlet) Fresh-water (stream) Land-based (summer irrigation), Land-based (summer and winter irrigation), Land-based (summer and winter irrigation), In-ground (Deep bore injection) Sub options (non-potable re-use) 	

Table 1: Primary Options to be taken forward for further assessment (toward an ultimate treatment and discharge solution)

<u>Key:</u> R	ed – Largely fails to me	et the criteria	, Amber - Mar	ginally meets the criteria	a, Green - Meets criteria	a well				
Treatment Process Option	Public Health	Environm ent	Cultural	Social & Community	Sustainability	Constructability	Technology	Financial Implications	Opportunities and Benefits	Statutory Considerations
Option A Existing ponds & UV Incl TSS removal, existing outfall	Membrane treatment will provide additional pathogen removal (multi- barrier approach). Human health effects will be lower than existing discharge.	Improved treatment quality compared to existing		Existing discharge located close to shore, knowledge of discharge. Offset by improved discharge quality.	Low energy treatment and conveyance system. Additional embodied and operational carbon associated with membrane treatment.	Replacement of existing outfall and membrane process can be readily constructed.	Reliable and proven technology.	Relatively low- cost solution.	Membrane treatment will produce a treated wastewater quality suitable for non-potable reuse.	See Note 1 below
Comment: A membrane	upgrade will provide ac	ditional path	ogen and TSS	removal with an overall	improvement in treated	d wastewater quality d	elivered at an af	fordable cost.		
Option B Existing ponds & UV Incl TSS removal, extended outfall	Memorane treatment will provide additional pathogen removal (multi- barrier approach). Human health effects will be lower than existing discharge.	Improved treatment quality compared to existing		Improved dilution and dispersion may improve community perception. Some opposition from community to marine discharge.	Low energy treatment and conveyance system. Additional embodied and operational carbon associated with membrane treatment.	Nembrane process can be readily constructed. New outfall difficult to construct in coastal area with high-currents. Further geotechnical investigation required to confirm construction methods for outfall.	Reliable and proven technology.	cost solution.	treatment will produce a treated wastewater quality suitable for non-potable reuse.	See Note 1 below
Comment: A membrane	upgrade will provide ac	ditional path	ogen and TSS	removal with an overall	improvement in treated	d wastewater quality d	elivered at an af	fordable cost. Ext	ended outfall will	provide greater
Option C	Membrane filtration	Potential		Potential for adverse	Carbon footprint	New discharge	Reliable and	High CAPEX &	Very-high	See Note 2
MBR	and UV disinfection will produce a treated wastewater with minimal pathogens. Public health risk likely to be low.	adverse due to low dilution and nutrient content – lessened due to nutrient removal.		effects on amenity values and aesthetics in freshwater environment.	higher	structure and new MBR process can be constructed. Further site investigations needed to determine site suitability for new tanks.	technology.	OPEX cost	quality treated wastewater suitable for non-potable reuse.	below
<u>Comment</u> : Discharged tr wastewater and a high de	reated wastewater woul egree of nutrient remove	d end up in h al could be a	arbor with pote chieved.	ential adverse effects or	n the water quality and e	ecology of the harbor.	However, MBR	+ UV will provide	a very high qualit	y treated
Option D	Low risk of public contact. WWTP	Disposal location		Need to consider community	Initial carbon footprint increase	Required confirmation of	DBI not common but	Moderate cost. Higher risk of	Potential for all year-round	See Note 3 below

<u>Key:</u> R	ed – Largely fails to me	et the criteria	, Amber - Mar	ginally meets the criteri	a, Green - Meets criteria	ı well				
Treatment Process Option	Public Health	Environm ent	Cultural	Social & Community	Sustainability	Constructability	Technology	Financial Implications	Opportunities and Benefits	Statutory Considerations
Deep Bore Injection DBI at either (i) Okete Formation - marine migration (Wainui Reserve) Or (ii) Karioi Formation - marine migration	treatment to include disinfection. At the Okete Formation, loading rate to reduce risk of break out on beach	selected to avoid environme ntal effects.		perception of migration to coastal area. Potential for recreational issues in terms of community perception	associated with drilling	geology and soakage rates (In respect to the Okete formation thickness of basalt layer potentially a limiting factor)	example in NZ (Russell). Common oversees with numerous examples in Hawaii.	cost increase depending on soakage rates (TBC).	disposal option.	
Comment: Okete: Carrie Karioi: Carried forward de	ed forward due to poter ue to potentially favoura	itial location v able geology a	vithin Wainui F and low public	Reserve, low public hea health risk	Ith risk and close locatio	n to WWTP.				
Option E Non- deficit irrigation (Year-round with seasonal storage)	Risk of spray drift but disinfection and buffer distances will mitigate this	Potential to promote nutrient migration but can be managed with appropriat e land use		Generally, well thought of but land purchase and opposition from neighbours may be challenging	Generally sustainable but need to be careful not to displace key food production land. Potential carbon sink if trees utilised.	Moderate land requirement and may be challenges in obtaining access and pipeline route.	Common Technology. Treatment: Pond system and UV	Land purchase may be high cost. Irrigation construction and pipeline costs moderate. Large storage volume cost may be high.	Beneficial Reuse	See Note 4 below
Comment: Carried forwa	ard due to smaller land	area (compar	ed with other I	and treatment options)	while not requiring a sea	asonal alternative disp	osal options.		•	
Option F Non-deficit irrigation with alternative disposal location	Risk of spray drift but disinfection and buffer distances will mitigate this	Potential to promote nutrient migration but can be managed with appropriat e land use		Generally, well thought of but land purchase and opposition from neighbours may be challenging	Generally sustainable but need to be careful not to displace key food production land. Potential carbon sink if trees utilised	Smaller land requirement but may be challenges in obtaining access and pipeline route.	Common Technology. Treatment: Depends on alternative discharge	Land purchase may be moderate cost. Irrigation construction and pipeline costs moderate. Costs of supporting disposal pathway needs consideration.	Beneficial Reuse	See Note 5 below
Comment: Carried forwa	ard due to smaller land a	area (compare	ed with other I	and treatment options).	Feasibility depends on	availability of suitable	seasonal altern	ative disposal opt	ions.	

Individual engagement in Hapū is underway. Ability of traffic light scoring for the blank category will be determined in time, however simple 'bottom lines' of Hapū are well known given the history of marine outfall consenting. Re-use initiatives are favoured by Hapū. Option refinement that meets known bottom lines should enable project progression.

Discharge Location: Existing Outfall

Description

Presently, the Raglan WWTP consent allows discharges up to 2,600m3 of treated wastewater daily into the Whaingaroa harbour on outgoing tides. The existing treated wastewater outfall, which is simply an open-ended pipe without a diffuser (see figure below), was constructed in the late 1970s, and has remained in place since. Thus, it is beyond its useful life and requires replacement. Any future upgrade to the existing outfall would be fitted with a diffuser or duck-bill type arrangement to improve initial mixing of the discharged treated wastewater.

Location

The treated wastewater enters the Whaingaroa Harbour at a location close to the harbour mouth, marked on the aerial image below.

Description
This is the existing process at Raglan WWTP. Wastewater is received at the inlet works, from where wastewater ponds with aquamats installed. The pond wastewater discharges into a day pond for storage prior to discharge From the day pond treated wastewater is pumped via an inline UV disinfection system to a discharge point new Whaingaroa (Raglan) Harbour.
Additional TSS removal can be achieved via tertiary treatment using a membrane. Wastewater flows through allowing only smaller particles to pass through. Some pathogens are removed through the membrane by a fil disinfection would provide additional pathogen removal.
Converting one or more of the current ponds to an activated sludge process will target the TSS, BOD and an parameters. Total nitrogen and phosphorus can also be targeted if required. A new clarifier would need to be
Construction of a new purpose-built activated sludge plant at the existing location, which is a more resilient o one of the existing ponds to the activated sludge process. A new clarifier would need to be installed.
A membrane bioreactor is an activated sludge process which uses membranes instead of a clarifier to separa wastewater. Nitrogen and phosphorus can be removed from this process.
Utilising the same bacteria as activated sludge, a fixed film process (e.g. submerged aerated filter, trickling fil material (biofilm) attached to media in a tank to treat the wastewater. A clarification step is also required to s slough off the media. Fixed film processes could be used with the existing ponds, and will target BOD and ar parameters.

ater is piped to aerated ge on the outgoing tide. ear the mouth of the

membrane modules, Itration process, whilst UV

nmoniacal nitrogen e installed.

ption than conversion of

ate solids from the treated

lter) uses biological separate the solids that mmoniacal nitrogen

Discharge Location: Extension of Existing Harbour Outfall into the Channel

Description

Presently, the Raglan WWTP has consent to discharge up to 2,600m³ of treated wastewater daily into the Whaingaroa Harbour on outgoing tides. The existing treated wastewater outfall could be optimised by extending it further into the channel, such that it is further from the harbour edge. This would lead to improved dispersion efficiency due to deeper water and stronger currents, and a reduction in likelihood of treated wastewater re-entering the harbour or being retained further around the coast due to eddying.

Any new discharge structure would be fitted with a diffuser or duck-bill type arrangement to improve initial mixing of the discharged treated wastewater. The new outfall could be either trenched or directionally drilled to depths between 2-4m at low tide depending on the nature of the bed material at the outfall site. Possible cross-sections are shown below.

Location

The treated wastewater enters the Whaingaroa Harbour at a location close to the harbour mouth, at a depth of between 2 and 4m (at low tide), marked on Figure 2.

Figure 2: Extended Outfall Possible Location and Alternative Alignment Options

Given the high current speeds and semi-exposed nature of the outfall location to larger waves, constructing a longer outfall at this location would be challenging. Maintenance would also be an issue given the large changes in seabed levels from shifting sand. For these reasons relatively short outfall extensions are proposed.

Discharge Location: Freshwater Discharge – Stream Restoration

Description

Treated wastewater could be discharged via a local stream (either Wainui Stream or one of the tributaries that flow along the western border of the plant), where it will mix and then flow to the harbour. This option will require additional solids, nutrient and pathogen removal.

This discharge location is an opportunity for stream restoration. For example, habitat-enhancing planting and restoration techniques such as bank rehabilitation, riparian planting for shade and temperature buffering, and re-introduction of aquatic species could be employed alongside a high-quality treated wastewater discharge.

Potential locations in close proximity to the WWTP include the unnamed tributary that runs through the WWTP site and the Wainui Stream. The water quality of the Wainui Stream is expected to be high given the catchment has been subject to significant planting over several decades.

The water quality of the Unnamed Tributary is expected to be moderate given the upstream pastoral farming land use. The lower margins of both streams are anticipated to be whitebait spawning habitat.

Location

Figure 1: Potential Stream Restoration Discharge Locations

Discharge Option: Deep Bore Injection

Description

Deep Bore Injection (DBI) is the purposeful injection of treated wastewater to the subsurface; whereby the intention is that the applied water ultimately permeates the subsurface and enters groundwater or an aquifer(s). The practice can harness an aquifer(s) storage, transmission/dissipation, and filtration properties whilst potentially providing water quality improvement benefits.

Treated wastewater would be injected into an array of deep bores that extend below groundwater level. The upper section of the borehole has a solid casing to contain the water while the lower section has a screen casing to discharge the treated wastewater into the subsurface where it disperses through fractures in the rock. The favourable volcanic geology of the Raglan area suggests that DBI may be a possible option for treated wastewater discharge.

Options for deep bore injection include two main geological options, based around injection into two different volcanic formations, being the older volcanic Okete Formation and the more recent volcanic Karioi Formation.

Location

The potential deep bore injection sites have been based around accessing the Karioi Formation or the Okete formation but vary depending on where the treated wastewater will ultimately migrate. In western areas, migration to the coastal marine environment is more likely.

It may be possible to inject into the Karioi or Okete Formations further east and south of Raglan, though ultimate migration of the injected wastewater via fresh water and harbour pathways needs to be considered.

DBI Option	Description
Okete Formation - marine migration (Wainui Reserve)	This incorporates injection into an older and thinner Okete volcanic layer, potentially accessed via the V Positioning of the bores would likely be along the western extent of the reserve, spaced to promote ever injected treated wastewater would likely be westward, towards the coastal marine environment. Conside to mitigating potential break out on Ngarunui Beach. The existing wastewater treatment system, with matter treatment would likely be suitable for this option.
Karioi Formation - marine migration	This option would incorporate injection into the more recent Karioi volcanic layer, which is thicker than t location would be at a suitable location near Manu Bay or Whale Bay, with migration of injected treated north west, to the coast. The existing wastewater treatment system, with membrane filtration tertiary treated for this option.
Karioi/Okete Formation - freshwater/harbour migration	This option would incorporate deep bore injection into either the Okete or Karioi formations but at a local injected treated wastewater would likely flow north to north east, potentially breaking out at surface water migrating to the harbour. Consideration would need to be given to potential groundwater and surface wastewater treatment, potentially to a potable standard, including improved nutrient removal and tertiar reverse osmosis would likely be required for this option.

Wainui Reserve (public land). en distribution. Migration of the deration would need to be given nembrane filtration tertiary

the Okete formation. The bore wastewater being north and eatment would likely be suitable

ation east of the coast, where er locations (freshwater) and vater users. Additional ry membrane filtration and/or

Discharge Option: Irrigation to Land

Description

Irrigation of treated wastewater to land provides an opportunity to not only utilise the wastewater as a water source and nutrient source for beneficial use on land but an opportunity to avoid, or reduce, the need for direct discharge of treated wastewater to surface water. Irrigation of treated wastewater to land, if managed at appropriate levels, can also provide for further treatment of the wastewater, reducing nutrients and pathogen migration to surface water.

Wastewater irrigation can be conducted at varying rates, depending on what the land use, soil type and receiving environment, can manage. Variations include:

- Rapid infiltration (high rate).
- Non-deficit irrigation (irrigating in excess of soil moisture requirements).
- Deficit irrigation (only irrigating when soil moisture levels demand irrigation).

Location

Irrigation of treated wastewater can occur to suitable land within a reasonable conveyance distance from the wastewater treatment plant. Irrigation of treated wastewater traditionally occurs on well to moderately well drained soils, on rural type land. The soils need to be reasonably well drained to minimise the occurrence of saturated conditions or runoff. The irrigation site also needs to be on land that is away from receptors and on land that can be maintained or

developed into a land use in keeping with irrigation, such as pasture or trees. Topography is also a key consideration as steep slopes can promote instability or runoff of the wastewater.

A GIS based assessment has been conducted to identify potentially suitable irrigation locations within a 10 km radius of the wastewater treatment plant. Irrigation Assessment Area

Irrigation Options	Description
Rapid infiltration	This option would involve construction of a smaller footprint irrigation area over an area of highly permeable groun layers are often removed and replaced with higher permeable gravels to improve infiltration rates. This option was in the Wainui Reserve and beach frontage (PDP 2001), however, it was considered that underlying geology may requiring excessive infiltration areas. The existing wastewater treatment system may be suitable for this but with
Non-deficit irrigation (with seasonal storage)	Non-deficit irrigation would involve irrigation to land at slow rates (several mm per day on average) when soil cond could occur when soil moisture levels are elevated (above field capacity) but not at risk of saturation. An indicativ indicates that a non-deficit irrigation system at Raglan may require 110 ha to 140 ha of irrigable land but 150,000 would be required during extended wet weather periods (winter months, May to September). The existing wastew would likely be suitable for this option.
Close to deficit irrigation (with seasonal storage)	Deficit irrigation would incorporate irrigation of treated wastewater to land at slow rates (several mm per day on avoily when soil moisture levels demand irrigation (below field capacity). When irrigation is not achievable under the is stored in a lagoon (likely 300,000 m ³ to 400,000 m ³) and then irrigated when soil conditions allow. This option was active irrigation area of 300 ha to 550 ha. Irrigation would likely occur from October to April and storage would likely September. The existing wastewater treatment system would likely be suitable for this option.
Non-deficit irrigation with alternative disposal location	This non -deficit irrigation option would operate similar to the above non-deficit irrigation option, however, instead wastewater during elevated soil moisture conditions, treated wastewater could be discharged via an alternative particular to the solution option.

nd conditions. Topsoil as considered previously limit infiltration, filtration also required.

ditions allow. Irrigation ve soil moisture model m³ of partial storage water treatment system

verage) but generally his scenario, wastewater vould likely require an ely occur from May to

of storing treated athway during wet soil

1) Secondary Side-stream Re-use Options for Treated Wastewater (see biosolids sheet also)

Key: F	Red – Largely fails to i	neet the crit	eria, Amber -	Marginally meets the	criteria, Green - Mee	ts criteria well				
Treatment Process Option	Public Health	Environ ment	Cultural	Social & Community	Sustainability	Constructability	Technolog y	Financial Implications	Opportunitie s and Benefits	Statutory Consideratio ns
Sub-Option X Existing ponds & UV Incl TSS removal	Higher quality treated wastewater – suitable for indirect potable re- use.	Potential adverse effects related to discharge into another environm ent.	and LIV disinf	Option unlikely to have any adverse amenity and aesthetic effects	Low energy treatment and conveyance system. Additional embodied and operational carbon associated with membrane treatment.	Membrane process can be readily constructed.	Reliable and proven technology.	Relatively low-cost solution.	Membrane treatment will produce a treated wastewater quality suitable for non-potable reuse.	Dependent on ultimate discharge environment – to be assessed as part of preferred wastewater scheme.
Comment. Treatment					grade) provide greate			of treated waste	waler.	
Sub-Option Y Existing ponds + use of sludge ponds as fish nursery (Raglan Eels proposal)	Treated wastewater quality not sufficient for beneficial reuse (from a human health perspective).	Potential adverse effects related to discharge into another environm ent. However, offset by potential beneficial effects of providing native fish habitat.		Option unlikely to have any adverse amenity and aesthetic effects	Low energy treatment and conveyance system, very low additional embodied carbon.	Minimal new infrastructure.	Unproven technology – no other demonstrati on sites. Potential for a trial at the Raglan site.	Low cost solution.	Opportunities for beneficial reuse of treated wastewater. Some opportunity for beneficial reuse of biosolids.	Dependent on ultimate discharge environment – to be assessed as part of preferred wastewater scheme.
Sub - Option Z	S proposal is not prov	Potential	i de trailed at	a small scale, depend	Carbon footprint	New MBR	Reliable and	Very high	Very-high	Dependent on
MBR & UV	treated wastewater – suitable for indirect potable re- use.	adverse effects related to discharge into another environm ent.		have any adverse amenity and aesthetic effects	higher	process can be readily constructed. Further site investigations needed to determine site suitability for new tanks.	proven technology.	CAPEX & OPEX cost	quality treated wastewater suitable for non-potable reuse.	ultimate discharge environment – to be assessed as part of preferred wastewater scheme.
Comment: Treatment provide additional nutri	options involving tertia ent removal.	ary filtration	and UV disinf	ection (membrane up	ograde and MBR) prov	vide greater opportui	nities for benefi	cial reuse of trea	ated wastewate	. MBR will

Option E and F

Treated Wastewater Reuse

Description

Treated wastewater could be reused for activities such as a plant nursery or golf course irrigation. Reuse treats wastewater as a resource, reducing the volume to be discharged elsewhere.

Improved treatment such as the addition of a tertiary membrane plant would be required to avoid public health impacts. Wastewater would not be suitable for stock or human potable uses, but would be suitable for a range of non-potable reuse options.

These options are likely to be sub-options of a wider wastewater treatment and discharge scheme.

Location

This would be dependent on the location of an activity that can accept significant volumes, or can provide year-round takes, of treated wastewater for use.

Examples of potential locations in and around Raglan are:

- Raglan Golf Club irrigation
- Boat wash at the boat ramp (with controls to limit risk of potable use)
- Irrigation to crops
- Use of existing storage ponds as a fish nursery (Raglan Eels proposal)

APPENDIX A

Project Objectives

The aim of the project is to identify the best practicable option to provide wastewater services for the Whāingaroa community. In doing this we aim to:

- Keep communities healthy
- Protect the environment, particularly the water quality and ecology of the Whāingaroa Harbour
- Recognise the significance of the Whaingaroa Harbour to mana whenua and support the kaitiaki management of customary fishing
- Protect the community use of the area, along with the visitor experience
- Work in partnership with the community and hap $\bar{\rm u}$
- Retain flexibility for future, sustainable, long-term solutions including potential reuse of treated wastewater
- Keep the overall costs of the wastewater solution to affordable levels

Criteria	Issue/Topic	Description/Explanation
Public Health	Microbiological quality of	Risk of public exposure to waterborne pathogens through:
	treated wastewater	- Direct contact with the conveyance or treatment process
		- Direct contact with the receiving environment, for example
		through contact recreation
		- Indirect exposure, through food gathering (such as shellfish, fish, watercress, etc) and groundwater use.
	Health effects from irrigation	Risk of public exposure to pathogens from irrigation.
	Treated wastewater re-use	Risk of contamination from treated water for non-potable re- use.
Environment	Water quality	Potential effects on freshwater (surface and ground) and coastal/marine receiving environments
	Aquatic ecology	Potential effects on aquatic ecosystems
	Terrestrial ecology	Potential effects on terrestrial ecosystems and soils
	Coastal environment and	Potential effects on significant coastal and marine areas,
	resources	existing harbour and coastal processes, and physical footprint
		within the harbour and coastal marine area.
Cultural	Mauri	Potential effects on mauri of land, water and air
	Kai moana	Potential effects on kai moana and the kaitiaki management of customary fishing
	Cultural values	Potential effects on the relationship of Maori and their culture
		and traditions with their ancestral lands, water, sites, waahi
	Health and Wellbeing	Potential effects on the ability of the land sea and air to
		support wairua in order to maintain health and wellbeing for Maori
Social and community	Amenity value and aesthetics	Potential effects on the natural and built environment (e.g. visual, odour, noise)
	Urban development	Extent to which the option enables residential and commercial development within the projected timeframe

Long-List Assessment Criteria

Criteria	Issue/Topic	Description/Explanation				
	Recreation	Extent to which the project enhances or detracts from local recreational activities and opportunities				
	Food gathering	Extent to which the project enhances or detracts from people's ability to collect food within the area				
	Access to the coast	Extent to which an option effects access to the coastal marine area				
Sustainability	Carbon footprint	Potential embodied and operational carbon footprint				
Constructability	Geology, soil, groundwater conditions	Option suited to local environmental conditions				
	Land availability, accessibility	Adequate and secure land must be available for the required infrastructure, timescales that fit within project timing				
	Existing infrastructure	Potential to maximise use of existing infrastructure that has a valuable remaining economic life, e.g. power supply, treatment plants, pumps, conveyance pipes and existing sites.				
Technology	Reliable, proven and robust	To be sustainable, an option should be based on proven				
	technology	technology and have adequate redundancy (spare operational capacity to provide back-up in case of failure)				
	Adaptable and flexible	Due to the uncertainty associated with future growth, a feasible option must be able to adapt to changing conditions such as increased flows and loads, discharge quality requirements, input requirements, and energy availability.				
	Able to be staged	The extent to which an option could be staged (e.g. through modularised components).				
	Operational and engineering resilience	The option must be sufficiently resilient to natural hazards and operational failure.				
Financial Implications	Capital cost	Is the cost of the project appropriate for the project area and the population served?				
	Operating and maintenance cost	Can the capital infrastructure be maintained and operated in a cost-effective manner?				
	Whole of life cost	How do the whole of life costs pf the various options compare?				
	Financial risk	Is the option affordable even if growth does not occur as predicted?				
Opportunities and Benefits	Opportunity for resource	The potential for beneficial reuse of treated wastewater.				
	recovery	The potential for beneficial reuse of biosolids				

APPENDIX B

<u>Note 1</u>: Further engagement with mana whenua required to assess consistency against Policy 23(2)(b)(ii) of the New Zealand Coastal Policy Statement 2010 (NZCPS). The upgraded existing treated wastewater discharge will be of a relatively high quality and adverse effects on ecosystems and habitats are likely to be avoided.

<u>Note 2</u>: Potential for adverse effects on freshwater quality. Further work required to assess consistency with the National Policy Statement for Freshwater Management 2014 (NPS-FM). Given discharge will flow to the coastal environment, further engagement with mana whenua required to assess consistency against Policy 23(2)(b)(ii) of the NZCPS.

Note 3: Potential for discharge to coastal waters if located in proximity to the coast. Further engagement with mana whenua required to assess consistency against Policy 23(2)(b)(ii) of the NZCPS. Unlikely to have significant adverse water quality effects on coastal waters.

Note 4: Potential for adverse effects on freshwater quality as a result of nutrient migration. Further work required to assess consistency with the NPS-FM. Given groundwater discharge will potentially flow to the coastal environment, further engagement with mana whenua required to assess consistency against Policy 23(2)(b)(ii) of the NZCPS.

<u>Note 5:</u> Potential for adverse effects on freshwater quality as a result of nutrient migration. Further work required to assess consistency with the NPS-FM. Other effects dependent on alternative disposal location, however given groundwater discharge will potentially flow to the coastal environment, further engagement with mana whenua required to assess consistency against Policy 23(2)(b)(ii) of the NZCPS.

Policy 23: I	Discharge o	of contan	ninants		
In the "New Zeala	nd Coastal Policy S	tatement 2010	⁷⁷		
Table of contents	← Previous section	Next section \rightarrow			
 In managing discharges to a. the sensitivity of the results b. the nature of the contant achieve the required we contaminants is exceend c. the capacity of the rector d. avoid significant adverse e. use the smallest mixing and f. minimise adverse effect In managing discharge of a. discharge of human set b. the discharge of treated i. there has been adect discharge; and ii. informed by an und 	o water in the coastal environ ecciving environment; iminants to be discharged, the ater quality in the receiving environment to assimil edd; and eiving environment to assimil se effects on ecosystems and g zone necessary to achieve t ts on the life-supporting capa human sewage, do not allow wage directly to water in the d human sewage to water in quate consideration of alternate erstanding of tangata when a	nment, have particular ne particular concentra environment, and the ri late the contaminants; d habitats after reasona the required water qua acity of water within a r: coastal environment w the coastal environme ative methods, sites an	regard to: tion of contaminants needed sks if that concentration of and: able mixing; lity in the receiving environm mixing zone. <i>v</i> ithout treatment; and nt, unless: d routes for undertaking the	d to nent;	
 Objectives, policies and r the coastal environment In managing discharges the coastal environment, 	ules in plans which provide fo nust have been subject to ea of stormwater take steps to a on a catchment by catchmen	or the discharge of trea rly and meaningful con void adverse effects of t basis, by:	ted human sewage into wate sultation with tangata when stormwater discharge to wa	ers of Iua. ater in	