From: Matthew Kernot Office Ph: + 64 - 9 - 276 5673 Ext 710 Mobile Ph: + 64 - 21 - 1064 733 Matthew.Kernot@gaia-engineers.co.nz

Date: 15 January 2020

Total Pages: 3+Appendices

To:	Сору:	Name		Organisation	Address		
\checkmark		Mark Pelan		Gleeson Quarries Ltd.	Mark.Pelan@gleesoncox.co.nz		
\checkmark		Biance Schoeman		Paua Planning Ltd.	biance@pauaplanning.co.nz		
\checkmark		Kate Madsen		Paua Planning Ltd.	kate@pauaplanning.co.nz		
Project No: 2325-12 Ref: Huntly Quarry Managed Fill Sites 2-4 – Geotechnical S92 Response Revisi					cal S92 Response Revision: A		

IMPORTANT NOTICE: This document is CONFIDENTIAL and may be LEGALLY PRIVILEGED. If you are not the addressee as indicated above, you are hereby notified that any use or dissemination of the information and any copying of the document is strictly prohibited. If you are not the addressee, please immediately notify us by telephone and destroy this document.

This letter is submitted in aid of a response to a request for additional information provided by the Waikato District Council under Section 92 of the Resource Management Act 1991. The section 92 request was provided by the council in the letter dated 18th December 2019. This letter is specifically in response to Point 1a under "Planning and General" and Point 4 titled "Geotechnical" as quoted below:

1. Planning and General

a) Please confirm the separation distance that will be maintained between the edge of Fill Area 3 and the northern most property boundary

4. Geotechnical

The Gaia Engineering Geotechnical Assessment Report has been peer reviewed by Baseline Geotechnical. The Baseline Geotechnical preliminary review was dated the 9 October 2019 and resulted in ongoing discussions between Baseline Geotechnical and the Gaia Engineers around the stability of the proposed fill sites. Baseline Geotechnical has also reviewed the revised Gaia Geotechnical Design report. As a result of that further review, there are three items that Baseline Geotechnical are of the opinion remain outstanding. These matters relate to Waikato Coal measures shear surfaces; fill site 2 geology; and seismic design analyses. Those matters are set out in more detail in the attached s92 Geotechnical request letter from Baseline Geotechnical. Please review that correspondence and provide a response to the 'additional information' aspects set out in that correspondence.

The letter from Baseline Geotechnical referenced above was appended to the Waikato District Council Document and is dated 11th December 2019.

Please find our response to these queries addressed below and in the comment tracking/summary sheet included in Appendix A. Additional documents, drawings and calculation outputs are included in Appendix B and C.

1. Peer Review Comment Sheet

A register of comments received from the Waikato Regional Council's peer review, Baseline Geotechnical, has been maintained over the course of the peer review process.

The register summarises the multiple rounds of comments and response including additional response to the remaining outstanding comments. The current version of this sheet is dated 03 December 2019 and is provided in Appendix A.

2. Fill Site 3 to Property Boundary Setback

The conceptual fill layout is setback approximately 28m from the property boundary directly north of the site to the toe of the fill. Conceptual stability modelling has demonstrated that no credible stability risk to the neighbouring property exists within this setback zone.

It is believed that a setback of this size would also provide a suitable buffer to allow access for maintenance of fill batter slopes and any installed drainage. The exact setback distance from the northern property boundary will be confirmed during detailed design.

3. <u>Revised Fill Site 2 Geology</u>

As part of the ongoing detailed investigation and design works for Fill Site 2 at the Huntly Quarry, additional investigation near the toe of the proposed fill has since been carried out.

The 6 additional test pits have been completed to depths ranging from 2.0 to 6.2m deep, primarily concentrated near the toe of the proposed fill. Draft test pit logs and a revised site plan showing the location of the additional test pits is included in Appendix B and Appendix C.

The additional test pits encountered improved ground conditions over those initially used for concept stability calculations. The improved ground conditions comprise weathered greywacke soils of the Newcastle Group in place of the previously assumed Waikato Coal Measures. Weathering depth to weak highly weathered material was found do be within 1.5m of the surface near the invert of the gully such as in TP209 and TP211.

Revised slope stability calculations based on the weathered greywacke toe founding material as opposed to the original Waikato Coal Measures toe founding material are provided in Appendix D.

4. <u>Slope Stability & Seismic Displacement Calculations</u>

Additional/revised slope stability calculations based on the outstanding comments listed in the letter provided by Baseline Geotechnical have been completed and are included in Appendix D.

Seismic Displacement analysis based on the revised limit equilibrium analysis has increased the predicted displacements in the order of 80mm with a 15% probability of exceedance. We consider the risk of such displacements on a fill slope that is able to be maintained to be sufficiently low. A copy of the calculation is also provided in Appendix D.

5. Limitations

The responses and additional calculations provided in this letter will need to be confirmed during detailed design for each fill site.

Yours sincerely Gaia Engineers Ltd

Prepared By:

Mht

Matthew Kernot Senior Engineering Geologist

Reviewed & Approved By:

Dr Ka-Ching Cheung Director

Appendices

- Appendix A Revised Comment Tracking Sheet
- Appendix B Test Pit Location Plan and Geological Cross Section

Appendix C – Draft Additional Test Pit Logs

Appendix D - Revised Limit Equilibrium Slope Stability Analyses & Seismic Displacement Calculation

Appendix A Revised Comment Tracking Sheet

Project:	Huntly Quarry – Fill Disposal Sites
Subject:	Resource Consent Report

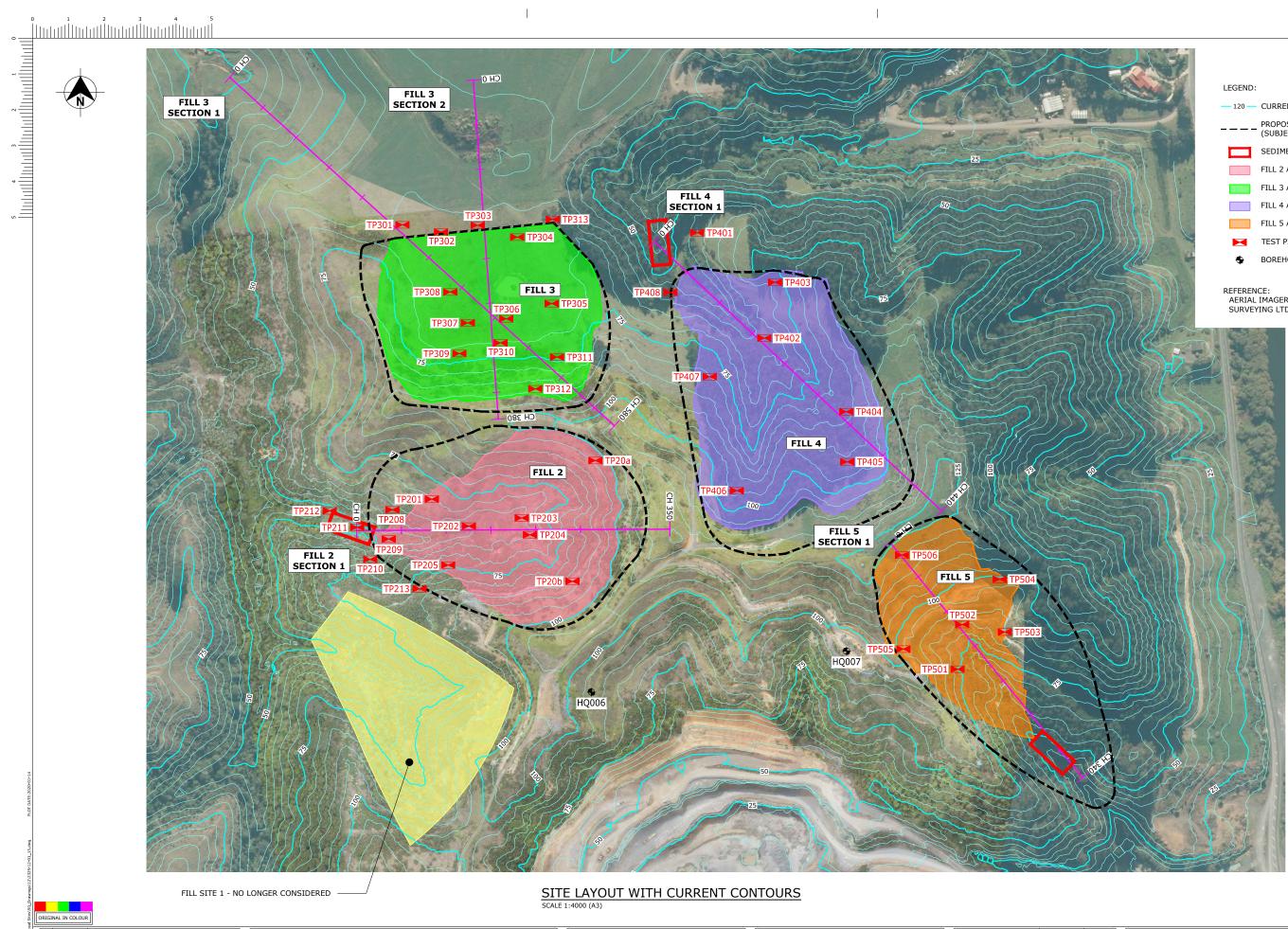
DOCUMENT REVISION:	03	Name of Reviewer(s):	Cameron Lines
Document Issue Date:	03 rd December 2019	Organisation:	Baseline Geotechnical
Purpose of Review:	Peer Review of geotechnical report to advise	Available Documents:	1) 2325-12-GQ-01 (Huntly Quarry Disposal Sites - G
	Waikato Regional Council.		2) 2325-12-GQ-01 (Huntly Quarry Disposal Sites – G

No.	Element	Peer Reviewer Comment Description	Gaia Response	Closed Out (Y/N) Comment	Further Reviewer Comment	Gaia Response	Closed Out (Y/N) Comment
1	Ground Model	Date (09/10/19)	Date (15/10/19):		Date (3/11/19):	Date (07/11/19):	Comment
		Provide reference to the key geotechnical risk presented by each lithological unit. Specific reference to:	 a) During our previous test-pit investigation only limited evidence of bedding planes were observed due to the depth reached with test-pits. Where bedding was observed it was most visible in the 		 a) For Overburden Disposal Areas (OBDA) paced on a foundation of Waikato Coal Measures (WCM). Bedding orientation and strength is a key geotechnical risk. The chaotic fabric described may be as a result of faulting, suggesting low 	Please refer to Rev. C of the report which now includes Section 4.3 which discusses geological risk and mitigation strategies including Waikato Coal Measures bedding.	Closed Out
		a) Potential presence and orientation of low strength, bedding parallel shears within Waikato Coal	moderately weathered material half way up the gullies. In the base of the gullies relatively unweathered Waikato Coal		strength, pre-sheared surfaces on bedding are a strong possibility.	a) It is accepted that the general bedding direction is difficult to ascertain at this time. As such we have undertaken preliminary stability analysis assuming	
		 Measures b) Fast groundwater seepages within historic mining fill c) Trial Pits failing to intersect contact between mining fill and underlying 	Measure mudstone was encountered where a more chaotic fabric was exhibited. As such, absolute bedding direction was difficult to ascertain.		Currently Gaia have not demonstrated a good understanding of the actual WCM bedding orientation or condition and have not analysed worst case combinations of orientation/strength. Given this, we don't understand how Gaia can	worst case bedding direction with a credibly low strength (shallow dipping out of the slope). The analysis is discussed in Section 7.0 of the Rev. C report	
		material d) Depth of the Newcastle Group Greywacke and relationship to the development	We consider bedding plane weaknesses to be of low risk to the development due to the nature of the fill being constructed from the fill toe (where the ground is		classify the risk as low, when every major slope failure in adjacent coal mine cuts or fills have occurred on these very structures. It has been our experience that pre-sheared, gently inclined	The analysis shows that the overall stability of the fill is still largely governed by the design and construction of the fill itself.	
			relatively flat) and back up the gully, effectively buttressing the Waikato Coal Measure slopes.		bedding surfaces within WCM can result in failure even at the toe of gently inclined slopes. There are any number of investigation techniques	During detailed design, if failures along low angle bedding shears near the toe of the fill are found to be a risk to the fill then these can be mitigated with specifically designed toe-keys.	
			No major cuts exposing bedding aligned weakness planes are proposed as part of the development.		available to confirm bedding orientation and condition. Gaia are not limited to test pits if other techniques would provide better data.	It is anticipated that detailed investigation and design will confirm whether or not these concerns are present near the toe of the fill and consequently will	
			Sensitivity of the foundation material at the fill toe can be tested based on		 b) The deep drains proposed are a good idea. Thought will need to be given to the effect on 	govern the design of the toe-keys as necessary.	
			different configurations of potentially present bedding fabric. If bedding direction cannot be determined reliably		groundwater in the fill, which will define the groundwater conditions for analysis.	b) Conservative groundwater parameters were adopted in the concept stability analysis likewise; residual pore water pressures were modelled the fill.	
			during detailed investigations, generalised anisotropic strength models		c) We are comfortable with the approach, but the stability of this Fill site for a combination of worst-	c) Noted, thank you.	

Geotechnical Assessment)_Rev B. Geotechnical Assessment)_Rev C.

No.	Element	Peer Reviewer Comment Description	Gaia Response	Closed Out (Y/N) Comment	Further Reviewer Comment	
			can be applied to simulate a range of potential bedding parallel weaknesses.b) Subsequent to the release of the report		case conditions will still need to be demonstrated at consenting stage (refer 2 below). d) We are comfortable with the approach. This	d) Noted, tha
			the client has proposed the installation of deep counterfort drains at Fill Site 3 to relieve the groundwater from the historic mining fill. This will form part of the detailed investigation and design. Response of the groundwater perched within the historic fill can be monitored during and after construction of the		risk is not as great as the WCM bedding shear risk described above.	
			drains. c) As for part (b) the client intends to			
			construct the deep drains with a long- reach excavator. We intend to use this excavator to assess the thickness and basal interface qualities of the historic fill. We consider this work to be part of the site investigation for detailed design of Fill Site 3. If the long-reach excavator is unable to identify the fill and in-situ ground interface, deep geotechnical drilling will be undertaken.			
			 d) Except for Fill Site 5 (excluded from peer review) the other three sites are underlain by Waikato Coal Measures. The thickness of this unit (whilst not certain) is considered to be great enough that the influence of the basement greywacke is considered to be inconsequential to the proposed fill development. If greywacke is encountered during detailed design investigations then this position will be revised and the impact analysed accordingly. 			
					Additional Reviewer Comment Date (26/11/19)	Date (02/121
					Foundation of Fill Site 2: You noted that recent more detailed investigation information at the toe of this fill area indicates greywacke soils and	As part of the additional tes the fill. These

Gaia Response	Closed Out (Y/N) Comment
hank you.	
	Comment
	Closed Out
219)	
he on-going detailed design of Fill Site 2, test pits were carried out near the toe of	
est pits were carried out hear the toe of	


No.	Element	Peer Reviewer Comment Description	Gaia Response	Closed Out (Y/N) Comment	Further Reviewer Comment	Gaia Response	Closed Out (Y/N) Comment
					weathered rock. This is expected to result in improved stability performance and reduced geotechnical risk. Please provide a summary of the conditions encountered, and revise ground conditions appropriately in your stability modelling.	weathered Newcastle Group greywacke. The pits reached between 1.6 and 6.2m depth and encountered residually to highly weathered material in the invert of the gully. Preliminary stability modelling for Fill Site 2 has been undertaken based on a residually to highly weathered greywacke toe.	
2	Stability	Date (09/10/19)	Date (15/10/19)		Date (03/11/19):	Date (07/11/19):	Comment
	Analyses	Expected stability of the proposed fill has not been demonstrated by analysis.	If it is deemed necessary for a Resource Consent application, we propose running preliminary 2D stability analyses of the existing ground and the currently proposed fill profiles at each fill site as a proof of the concept. Preliminary stability calculations will be based on currently known conditions and will require a number of assumptions to be made. Detailed stability calculations and design will still be required as part of the detailed design of each fill after Resource Consent is granted. Please note that based on past experience with similar projects (such as a similar sized fill site at the Drury Quarry) and engineering judgement, it is our opinion that the assessed site is suitable for the proposed development. Detailed design		Given that the ground and groundwater conditions are not presently well enough understood at the fill sites to address the key geotechnical risks. We still don't understand the basis on which Gaia consider the sites suitable. However, there is a potential alternative to further time consuming and costly ground investigation. If Gaia can demonstrate that the fills can achieve an acceptable Factor of Safety in preliminary 2D limit equilibrium analyses, for a series of worst-case ground conditions, then this would adequately demonstrate the suitability of the sites (i.e. actual stability can only be better than that analysed). The analyses should allow for gently inclined (out of slope) bedding orientations, residual strengths on bedding (or mine fill/WCM contact) and a reasonable assumption around long term	Concept stability analysis presented in Revision C of the report have shown that the stability of the site is largely controlled by the fill stability itself. It is noted that we have incorporated a low strength, low angle bedding orientation anisotropy in the analysis. We are satisfied that residual risks posed by unknowns related to the underlying geology can be sufficiently mitigated through design of toe-keys, structural bunds and internal drainage blankets during detailed design.	Closed Out
			for the construction of the fills will be undertaken as part of the Resource Consent Conditions.		groundwater in line with anticipated underfill drainage works.		Comment Closed Out
					Additional Reviewer Comment Date (26/11/19)	Date (02/1219)	
					 a) Bedding shears in Waikato Coal Measures (WCM) have been analysed using an anisotropic function. Lower bound strengths have been set at c'=0, phi,=28° for a dip magnitude of 4°to 20° degrees. The basis for this was back analysing existing topography to a Factor of Safety (FoS) of 1.2. Those numbers for strength on bedding shear values are higher than normally considered in the North Waikato Basin. Typical failure back 	 a) We have completed additional sensitivity checks on our existing preliminary slope stability models and have found that the worst credible strength parameter for the WCM anisotropic function to be c'=0 and phi=18~19°. We have re-run the calculations based on this worst-case strength parameter. Our previous conclusions that the proposed slopes are not especially sensitive to the possible presence of bedding related shears remains valid. 	

No.	Element	Peer Reviewer Comment Description	Gaia Response	Closed Out (Y/N) Comment	Further Reviewer Comment	Gaia Response	Closed Out (Y/N) Comment
					 analysis, ring shear test results and design parameters for nearby mine slopes would normally be around c'=0, phi,=10°-15° for bedding shears. On this basis, can you please revise your back analysis based on a FoS=1.0 and then use the strengths derived from that change as the basis for your anisotropic parameters. b) Additionally, can you please demonstrate stability along the coal measures foundation by incorporating user defined slip planes subparallel to existing ground surface. A circular surface may not pick up planar foundation instability well. c) Currently your seismic models do not incorporate your anisotropic strengths in the WCM foundation. This will have a significant bearing on stability results. Please demonstrate this in your modelling cases. d) Some seismic analyses indicate a failure condition under the adopted Seismic Load (FoS <1.0). You indicated that this could be addressed by way of a displacement analysis. I am comfortable with that approach. Can you please provide the results of the displacement analysis when the items above have been addressed in the stability modelling. 	 b) All analyses have been run using non-circular failure searches. The divisions per slice was set to 50 to help allow the calculated surface to follow the most critical path. We have also included a manual non-circular surface analysis following the anisotropic layer as requested for Fill Sites 3 and 4. c) Additional analyses have been run under a higher seismic loading of 0.24g which was established based on NZTA Bridge Manual 3rd edition, Amendment 3 during detailed design of Fill Site 5. Anisotropic bedding material has been included as requested. d) Critical seismic PGA where FoS≈0.6 has subsequently been calculated and preliminary displacement analyses undertaken using an effective earthquake magnitude of 5.8. For a 15% probability of exceedance displacements were calculated to be between 70mm and 80mm across the four sites. Displacement calc. summary sheets for each fill are attached. We believe that displacements of this magnitude can be tolerated by such earth fill structures which have the ability to be maintained by the owner using benches. 	
3	Groundwater	Date (09/10/19) Influence of underlying groundwater conditions in the foundation soils on the stability performance of the fills.	Date (15/10/19) Surficial groundwater regimes are currently heavily influenced by the presence of farm dams, ponds, infilled gullies etc. As such, we have recommended that these dams and ponds be released and drainage measures installed. Subsequent groundwater conditions will be reassessed. It is anticipated that this would happen post Resource Consent and during detailed design and construction stages		Date (03/11/19): We are comfortable with what is proposed. A reasonable assumption around foundation groundwater pressures in line with proposed drainage works will need to be made in analyses discussed in 2. Above.	Date (07/11/19): Noted. See point 2.	Comment Closed Out
9	Fill Extents	Date (09/10/19) Extent of fill footprint not finalised at this pre-application stage will need to	Date (15/10/19) It is our understanding that the concept fill footprints provided by our client are representative of the required fill. From		Date (03/11/19): We understand that during construction deviations in places may need to be made. The proposed	Date (07/11/19): Please see revised drawing included in Appendix A of the Rev. C report.	Comment Closed Out

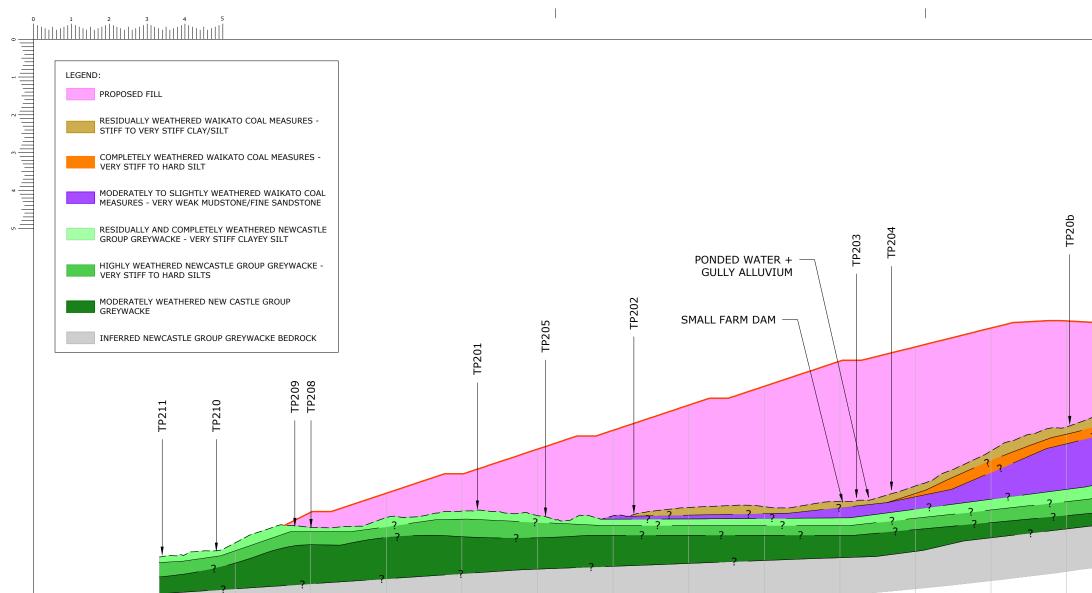
No.	Element	Peer Reviewer Comment Description	Gaia Response	Closed Out (Y/N) Comment	Further Reviewer Comment	Gaia Response	Closed Out (Y/N) Comment
		be confirmed prior to consent application	discussion with our client we understood that it is desirable to maintain a scope to deviate slightly from the concept footprints where required during the detailed design stage. These deviations are largely for operational reasons and are unlikely to be significant from a geotechnical perspective. We propose that a "Footprint Limit" or similar be added to the concept drawings to aid with		footprint limit would assist our understanding of the anticipated extent of the deviations that may occur.	The fill footprints are all confined to the gully they reside in. Comment has been added to Section 8.4 of the Rev C report to discuss this.	
11	Whole-of-life considerations	Date (09/10/19) Consideration for in-ground pore water pressure monitoring such as vibrating wire piezometers to be installed within the fill.	visualisation of this. Date (15/10/19): In our experience with similar fills a sufficient approach has been to monitor settlement and displacement of the fills with sufficient placement of designed drainage blankets to speed up fill consolidation as each bench is completed. We propose installation of standpipe piezometers or similar as a mitigation strategy should unsatisfactory settlement/displacement be observed within the fills. Settlement and displacement vs time thresholds will be developed for each fill during detailed design.		Date (03/11/19): While monitoring of pore pressure build up in the fill would assist in managing global instability risk, the proposed drainage blankets are largely expected to adequately control this. Having given this further consideration, we are comfortable with the monitoring proposed by Gaia.	Date (07/11/19): Noted, thank you.	Comment Closed Out
12	Factual Data	Date (09/10/19) Show location of historic boreholes on site plans if significant to the project	Date (15/10/19): Historic boreholes and associated logs will be shown on the drawing and included in the appendices. Please note that these boreholes were not oriented so primarily provide stratigraphic depth information only.		Date (03/11/19): Thank you for resolving this. These will assist our further understanding of the site.	Date (07/11/19): Please see revised drawing 2325-12-01 Rev B included in Rev. C of the report. Borehole Logs are included in Appendix B of the Rev. C report	Comment Closed Out
13	Factual Data	Date (09/10/19) Discrepancy between trial pit names between logs and drawing for Fill Site 3	Date (15/10/19): Thank you for pointing this out. Site plans will be amended to match the provided logs.		Date (03/11/19): Thank you for resolving this.	Date (07/11/19): Please see revised drawing 2325-12-01 Rev B included in Rev. C of the report.	Comment Closed Out

Appendix B Test Pit Location Plan & Geological Cross Section

C 14/01/20 REVISED FOR INFORMATION B 01/11/19 REVISED FOR INFORMATION A 02/09/19 DRAFT FOR COMMENT Rev. Date Revision Details

Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 106 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz Client Gleeson Quarries

Project Director:	Signature:	Date:
K. C. CHEUNG		
Designed: M. KERNOT		
Design Review: K. C. CHEUNG		
Drawn: S. CHEN		
Drafting Check: M. KERNOT		



- PROPOSED FILL FOOTPRINT CONCEPT LIMIT (SUBJECT TO DETAILED DESIGN)
 - SEDIMENT POND AREA (INDICATIVE ONLY)
- FILL 2 AREA FILL 3 AREA FILL 4 AREA
- FILL 5 AREA
- TEST PIT (TP)
- BOREHOLE (HQ)

REFERENCE: AERIAL IMAGERY + CONTOURS FROM PILBROW SURVEYING LTD. APRIL 2019

	INFORMATION
Project: HUNTLY QUARRY DISPOSAL SITES	Project No. 2325/12
Drawing Title:	Scale: AS SHOWN ORIGINAL SHEET SIZE: A3 Drawing No. Rev.
	2325-12-01 C

81.50

58.90

22.60

120

ORIGINAL IN COLOU

B 14/01/20 REVISED FOR INFORMATION A 02/09/19 DRAFT FOR COMMENT Rev. Date Revision Details

DATUM: 0.00m

PROPOSED LEVELS

CURRENT LEVELS

CUT/FILL DEPTHS

- - - -

CHAINAGE

2

α

82

59.

83

55.

66

6

51.74

20

87

64.

43

58.

6.44

60

8

70.

60.15

9.85

80

76.51

98

58.

17.53

100

Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington S Carmont Place, Mt Weilington Auckland 1060 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz

88.15

08

61.

27.07

140

93.14

61.32

31.83

160

Project Director:	Signature:	Date:
K. C. CHEUNG		
Designed:		
M. KERNOT		
Design Review:		
K. C. CHEUNG		
Drawn:		
S. CHEN		
Drafting Check:		
M. KERNOT		

55

108

05

76.

32.51

220

110.41

42

82.

66

27

240

66

106.

00

89.

17.98

260

PROPOSED FILL 2 SECTION 1

80

99.

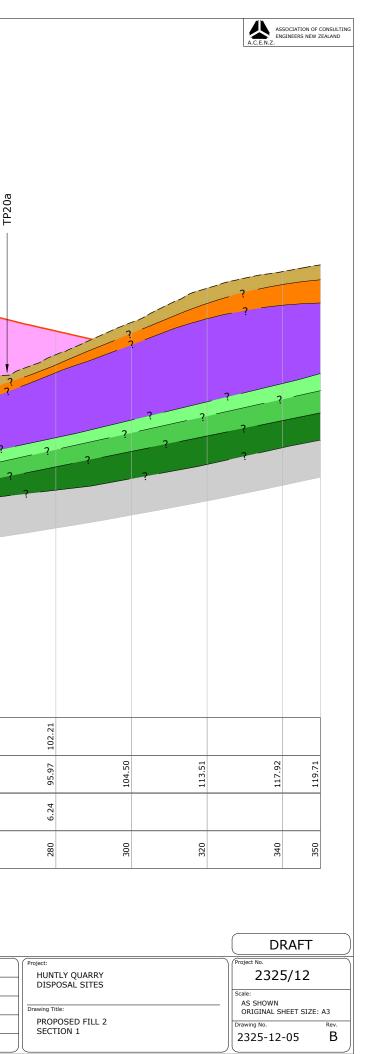
99

62.

37.14

180

103.57


66.80

1

36.

200

SCALE 1:1000 (A3)

Appendix C Test Pit Logs

	A.		TEST PIT LOG											TEST PIT ID. TP2(1:30 Shee					
PROJECT:	Huntly Quarry Disp	oosal Sites	1	CLIE	NT: (Gleesor	Quarrie	s Ltd.				JOE	3 No:	2	2325				
LOCATION: COORDINATES:	Huntly Quarry E.433553.7m N.721344.3m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 63.20m Auckland				PIT	STAF FINIS ATHE	HED:		07	7/11/20 7/11/20 ne						
	Soil	/Rock Description	l		Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr			ala 00mm) 8 10	12	Sample ID	Sample Type	R.L (m)		
0.00-0.30 m TOPSOIL					-												- 63.0 —		
0.30-1.00 m Clayey SILT; oran	ge-brown mottles. Stiff,	ire.					140	30											
1.00-3.50 m Clayey SILT with s with light grey incl	some completely weath usions. Gravels are ex	e-brown	- 1 		E		109	37							- 62.0 - - -				
					2		Colluvium												
																	- - - - -		
2 50 5 70 m					- 3			-									- - 60.0 - -		
3.50-5.70 m SILT; yellow-brown weathered greywa	n and light grey mottles acke, limonite and MnC	s. Hard, low plastic) staining on relict	city, moist [inferred com fractures]	pletely	- - - - - - - - - - - - - - - - - - -												-		
							Newcastle Group Greywacke										59.0 — - - -		
					5	× × × × × × × × × × × × × × × × × ×	Newcastle										- - - 58.0 —		
	End														- - -				
					6												-		
		Remarks:							-	undwa									
Plant: Hita Logged: PS Checked: KC Approved: KC	с	No. 1872	nce with	n NZ Ge	eotechnic	al Soci					counte	ered							

GA	JA		TEST PIT LOG										ST PIT	TP2	D209 Sheet 1 of 1		
PROJECT:	Huntly Quarry D	isposal Sites		CLIE	NT: (Gleesor	Quarrie	s Ltd.				JOI	3 No:	232	25		
LOCATION: COORDINATE	Huntly Quarry S: E.433549.6m N.721311.6m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 51.30m Auckland				PIT	STAR FINIS ATHE	HED:		0	7/11/20 7/11/20 ine				
	\$	Soil/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2	Sc (blows/	ala 100mm) 8 10 1	2 Sample ID	Sample Type	R.L (m)	
0.00-0.30 m TOPSOIL					-		E									-	
0.30-0.80 m Clayey SILT; yı	ellow-brown. Stiff, moist	, moderate plasticity	r, slightly fissured textur	e.	- - - - -		Colluvium									51.0	
0.80-1.50 m Clayey SILT w moist [inferred fractures]	ith some sand; yellow-b completely weathered o	ticity, elict	- - - - - - - - - - - - -		Newcastle Group Material												
1.50-2.00 m Highly weather joints with limo	rd, grey, brown and orar nite and MnO staining,	v spaced	- - - - - -	× × × × × × × × × × × × × × × × × × ×	Newcastle									-			
	E		2	× × × × × × × × ×		-								- - 49.0 —			
					- - - - -											-	
					3											- - - 48.0 —	
					- - - - - - - - -												
					- 4 - - - - - - -											- - 47.0 — -	
					- - - - - - - - - - - - - - - - - - -											-	
					- - - - - -											- - 46.0 — - -	
					- 6												
Contractor:	Gleeson Civil Ltd.	Remarks:							Gro	undwa	l ater r	notes:					
Plant: Logged: Checked:	Hitatchi 30t Excavator PS KCC	No. 1872					Gro	undwa	ater N	Not Er	ncounte	red					
Approved:	KCC		Logged i	n accordar	ice with	n NZ Ge	eotechnic	ai Soci	ety (2	uu5) g	luide	lines					

TP209
PROJECT: Huntly Quarry Disposal Sites

GAIA			TEST PIT LOG													
PROJECT:	Huntly Quarry Dis	posal Sites		CLIE	NT: (Gleeson	Quarries	s Ltd.				JOB	No:	2325		
LOCATION: COORDINATES:	Huntly Quarry E.433528.9m N.721288.9m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 61.70m Auckland				PIT	STAF FINIS ATHE	HED:			/11/201 /11/201 ne			
	So	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	(b		la 00mm) 8 10 12	Sample ID	Sample Type	R.L (m)
0.00-0.30 m TOPSOIL					-		mi									-
0.30-0.60 m Clayey SILT; orange	-brown; Stiff, low pla		-		Colluvium									-		
0.60-4.70 m Sandy SILT; light gre greywacke, very clos		eathered	- - - - - - - - - - - - - - - - - - -											- 61.0 — - -		
From 2.4 - 2.8m: pir	nk streaks		2											-		
					- 3		Group Material							_		- 59.0 — - - -
					- - - - - - - - - - - - - - - - - - -		Newcastle C									
4.70-5.70 m Completely weather spaced joints with lir																
	Enc													- - - - - - - - - - - - - - - - - - -		
					6											
Contractor: Glees		<u> </u>	L	1	I	Gro	undwa	iter no	tes:		1	1	1			
Plant: Hitato Logged: PS Checked: KCC Approved: KCC	No. 1872 n accordar	ice with	n NZ Ge	eotechnic	al Soci					counter	ed					

TP210
PROJECT: Huntly Quarry Disposal Sites

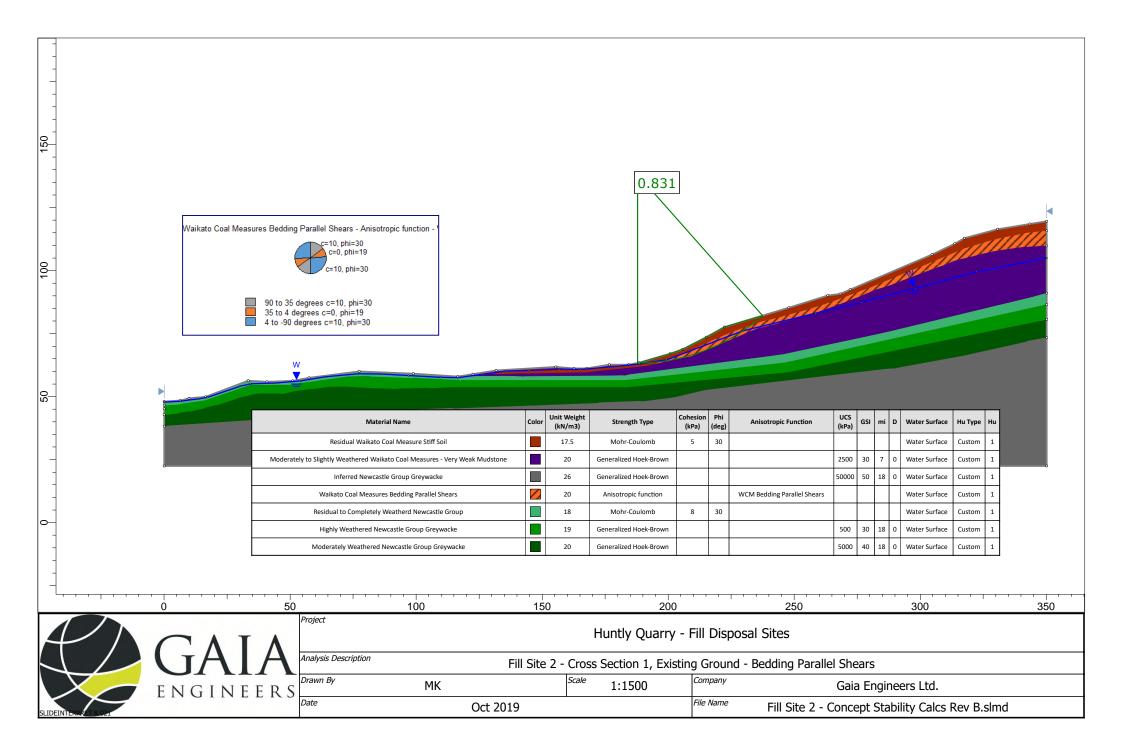
TEST PIT LOG												TEST PIT ID. TP211											
GA	IA			IES	ІГ	-11	LU	J				1:30			Sheet 1 of 1								
PROJECT:	Huntly Quarry Dis	posal Sites	1	CLIE	NT:	Gleesor	Quarries	s Ltd.				JOB	No:	2325									
LOCATION: COORDINATE	Huntly Quarry S: E.433514.4m N.721324.7m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 48.20m Auckland				PIT	STAR FINIS ATHE	HED:			7/11/201 7/11/201 ne										
	So	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr		Sca blows/1	ala 00mm) 8 10 12	Sample ID	Sample Type	R.L (m)							
0.00-0.20 m TOPSOIL			E		5									-									
0.20-0.60 m Sandy SILT wi completely we	th some clay; light grey a athered greywacke].	nd yellow-brown. H	lard, non plastic, moist	[inferred	-		aterial									48.0							
0.60-1.60 m Highly weather smooth, planar stones	red, grey, brown and oran r joints with limonite and N	ly spaced, core	- - - - - - - - - - - - - - - - - - -		Newcastle Group Material									- - - - 47.0 — -									
	En	d of Pit @ 1.6 m														-							
					2									_		- - 46.0 —							
																-							
														_		-							
																45.0 — - -							
					- 4									_		-							
																44.0 —							
																-							
																- 43.0 — - -							
																-							
					6											-							
Contractor:	Gleeson Civil Ltd.						Gro	undwa	l iter n	otes:													
Logged:	Hitatchi 30t Excavator PS KCC	SV readings corre	ected to BS1377 - Dial										counter	ed									
Approved:	ксс		Logged in accordance with NZ Geotechnical Society (2005) gui										(2005) guidelines										

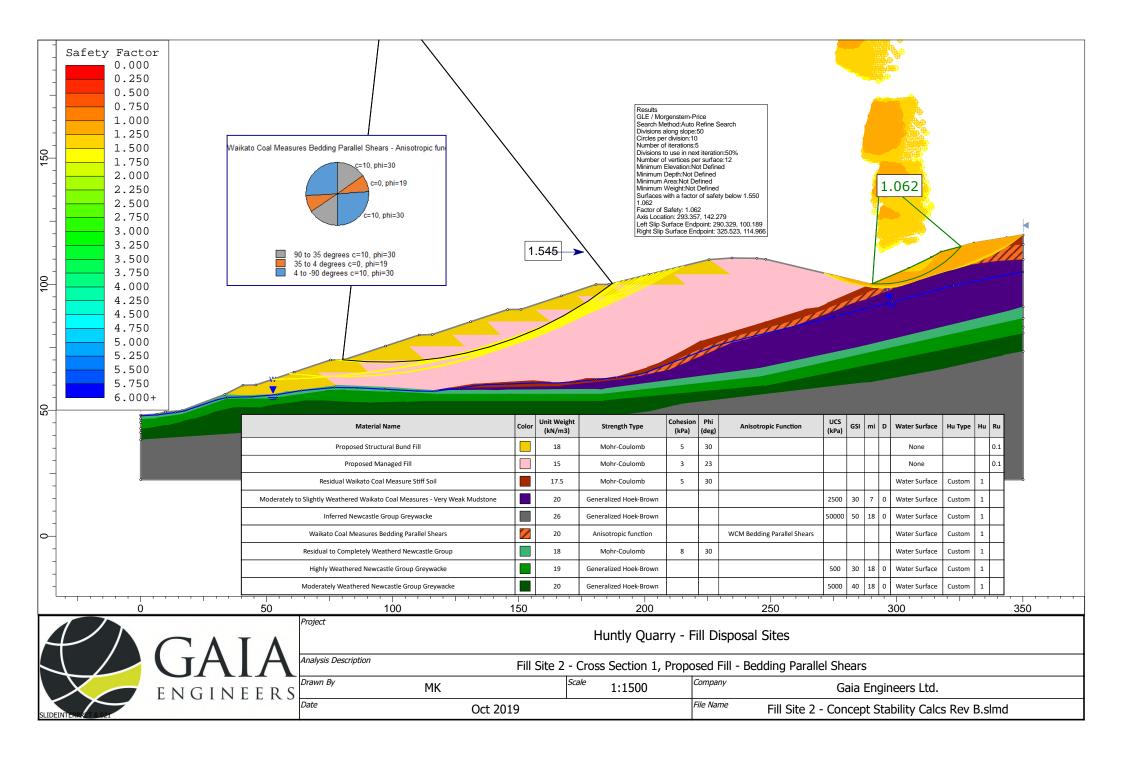
GA	IA HEERS		TEST PIT LOG											it id. T	P21 Sheet		
PROJECT:	Huntly Quarry Dis	posal Sites		CLIE	NT: (Gleesor	Quarrie	s Ltd.				JO	B No	:	2325		
LOCATION: COORDINATE	Huntly Quarry S: E.433483.7m N.721343.1m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 47.70m Auckland				PIT	STAF FINIS ATHE	HED:		C)7/11/)7/11/ ⁻ ine				
	Sc	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2	(blows	cala /100mr		Sample ID	Sample Type	R.L (m)
0.00-0.30 m TOPSOIL					-											0,	-
0.30-1.10 m Clayey SILT wi moderate plast	th trace sand; yellow-bro icity, fissured	wn and orange-bro	own mottles. Very stiff, r	noist,			- - - -										- - 47.0 —
1.10-3.20 m Sandy SILT; lig greywacke].	ht grey and orange. Harc	reathered	- - - - - - - - - - - - - - - - - - -		Newcastle Group Material		113	45									
					2		Newcastle										46.0
From 3 0m b	ecoming very weak rock	strength															- - 45.0 - -
		-															-
	En	d of Pit @ 3.2 m			- 4												
																	42.0
	Gleeson Civil Ltd.	10=-	•	•	•	•	_	undwa						•	•		
Logged: Checked:	Hitatchi 30t Excavator PS KCC KCC	No. 1872 n accordar	nce with	h NZ Ge	eotechnic	al Soci		undwa 005) g				ntered	1				

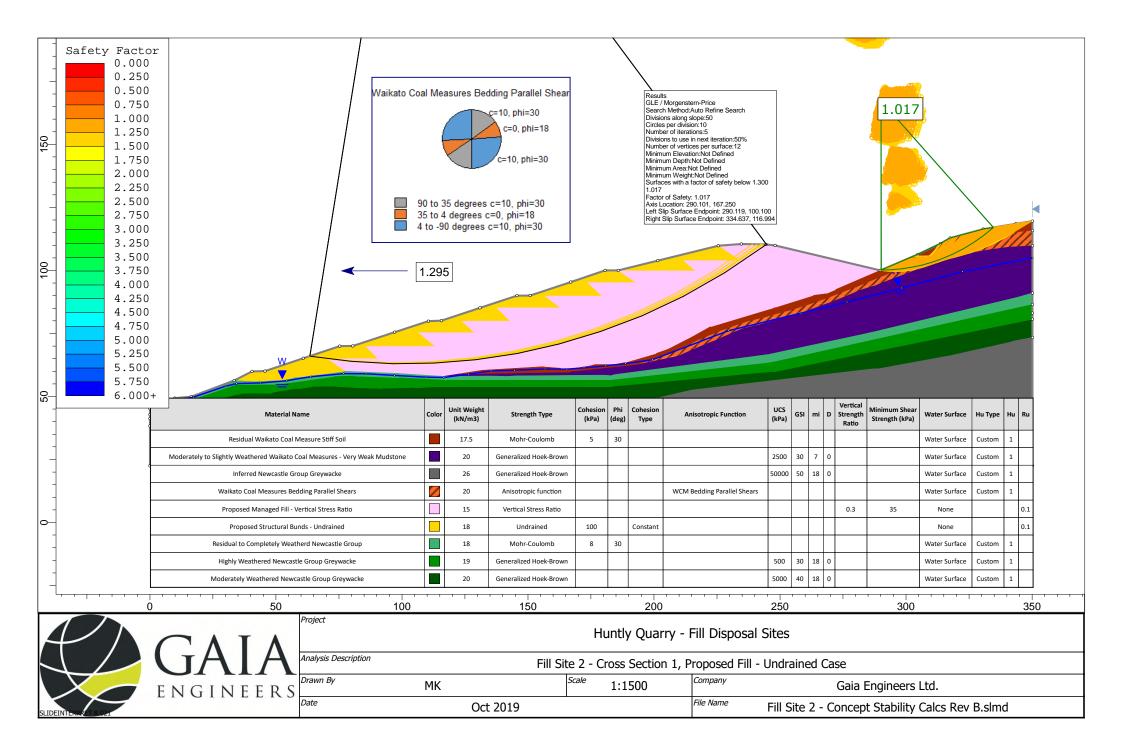
TP212 PROJECT: Huntly Quarry Disposal Sites

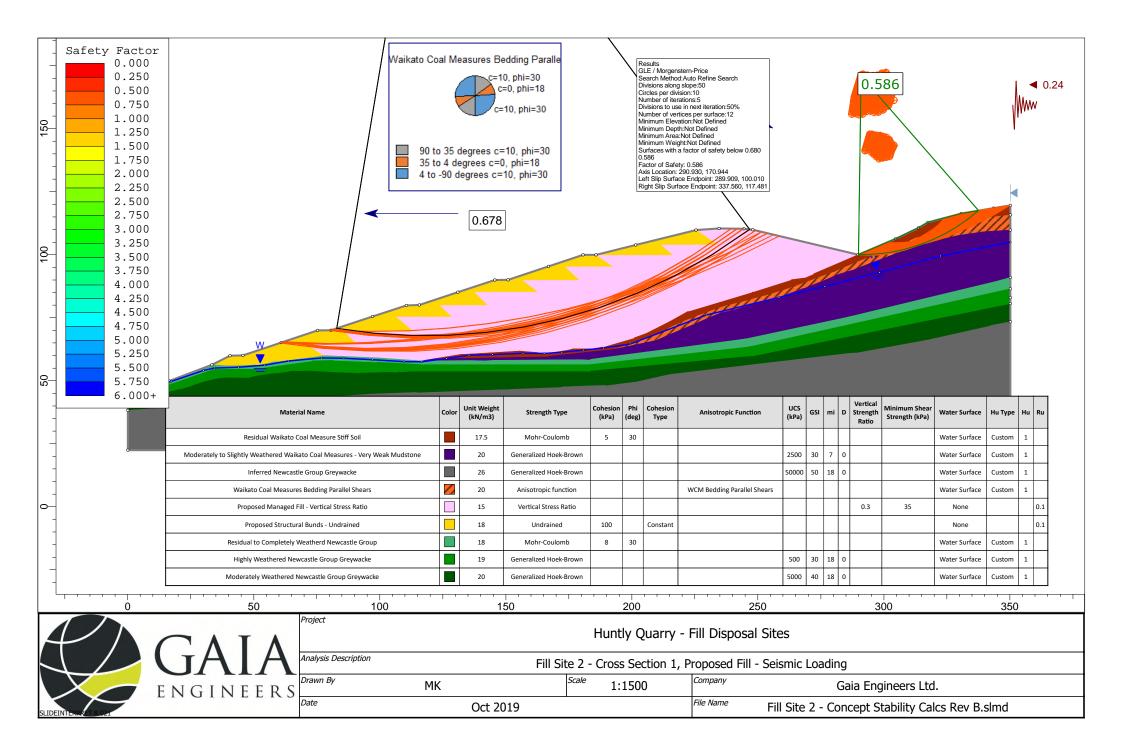
	s		TEST PIT LOG											םו דוי. T	D. FP213 Sheet 1 of 2		
PROJECT:	Huntly Quarry Dis	sposal Sites		CLIE	NT: (Gleeson	Quarries	s Ltd.				JO	B No	D:	2325		
LOCATION: COORDINATES:	Huntly Quarry E.433584.1m N.721256.2m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 81.10m Auckland				PIT		RTED: SHED: R:		0		/2019 /2019			
	Sc	il/Rock Description				Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2	Scala (blows/100mm)			Sample ID	Sample Type	R.L (m)
0.00-0.50 m TOPSOIL & Track I	Fill																81.0
0.50-3.50 m Silty CLAY; yellow-	brown. Stiff to very st	tiff, moist, moderat	e plasticity		- - - - - - - - - - - - - - - - - - -												
									177	27							80.0 - - - -
					2				164	63							- - - 79.0
						× × × × × × × × × ×	castle Group Material										-
					3	4 X X X X X X X X X	Newcastle Grou										- 78.0 - -
3.50-5.40 m Clayey SILT; light g plasticity, moist [inf	rey and yellow-brow erred completely wea	n mottles with pink athered greywacke	veining. Very stiff, mod].	lerate													
						<pre>x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1</pre>											77.0
					- 5	×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1											- - - 76.0 —
5.40-6.20 m SILT with trace clay and MnO present c greywacke].	y; light grey and fine of the of the of the of the off	orange veining. Ha d relict jointing [inf	ard, moist, low plasticity, erred completely weath	, limonite ered		X X X X X X X X X X X X X X X X X X X											
					6	$\times \times \times$											-
Contractor: Glee	eson Civil Ltd.	Remarks:							Gro	undwa	ater	notes	:				
Plant: Hita Logged: PS Checked: KCC Approved: KCC	No. 1872		- NIZ 0		-10	Gro	undwa	ater	Not E	ncou	intered	1					

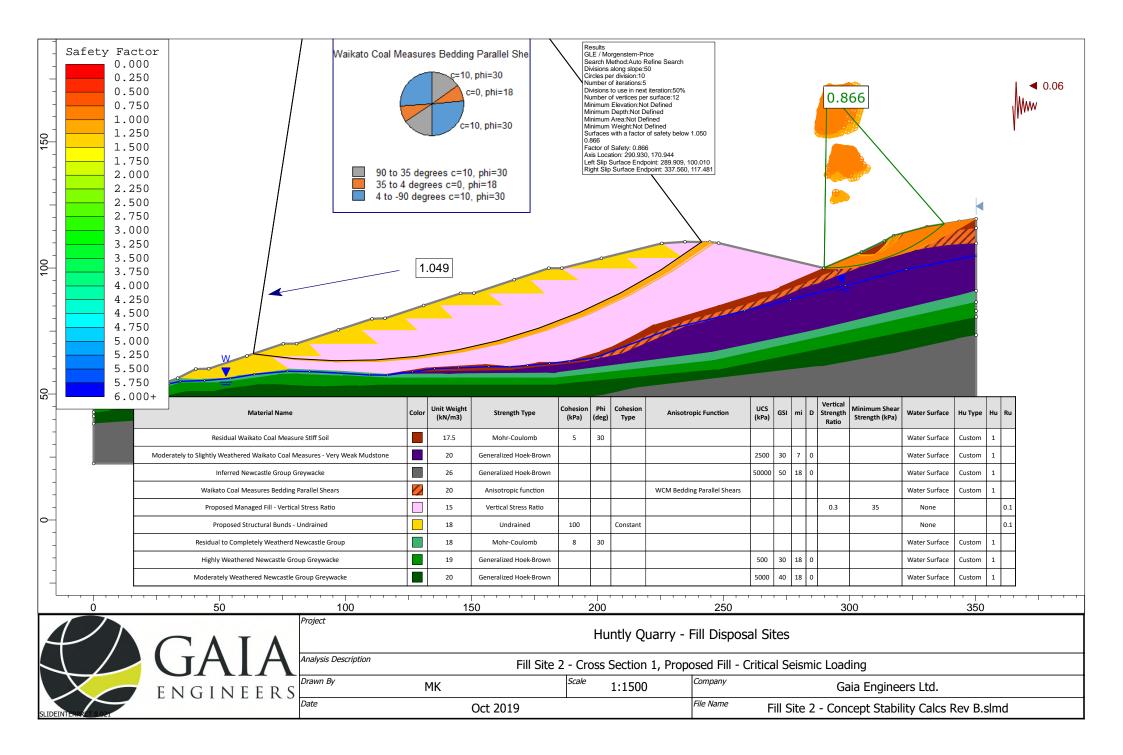
GA	IA		TEST PIT LOG											DI TID. T). FP213 Sheet 2 of 2			
PROJECT:	Huntly Quarry Dis	posal Sites		CLIE	NT: (Gleesor	Quarries	s Ltd.				JO	B No	D:	2325			
LOCATION: COORDINATES	Huntly Quarry 5: E.433584.1m N.721256.2m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 81.10m Aucklanc				PIT	STAR FINIS ATHEI	HED:		0		/2019 /2019				
	So	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Vane Stre (kF	Shear ngth Pa) Tr		Si (blows		im) 10 12	Sample ID	Sample Type	R.L (m)	
SILT with trace and MnO prese greywacke].	clay; light grey and fine on the on very closely space	orange veining. Ha d relict jointing [infe	rd, moist, low plasticity, erred completely weath	, limonite ered	-	× × × < × × > × × ×	•									o	75.0	
<u>a o j nacio j</u>	End	d of Pit @ 6.2 m			- - - - - - - - - - - - - - - - - - -												-	
					_ / 												74.0	
					- 												73.0	
					- - - - - - - - - - - - - - - - - - -												- - 72.0 — - - - -	
					- - - - - - - - - - - - - - - - - - -												71.0	
					- - - - - - - - - - - - - - - - - - -													
Contractor: 0	Gleeson Civil Ltd.	Remarks:			- - - - - - - - - - - - - - - - - - -				Grou	undwa	ter r	notes	:					
Plant: H Logged: F Checked: H	ditatchi 30t Excavator PS KCC KCC		cted to BS1377 - Dial I Logged i	No. 1872 n accordan	ce wit	n NZ Ge	eotechnic	al Soci	Grou	undwa	ter N	lot E	ncou	Interec	ł			

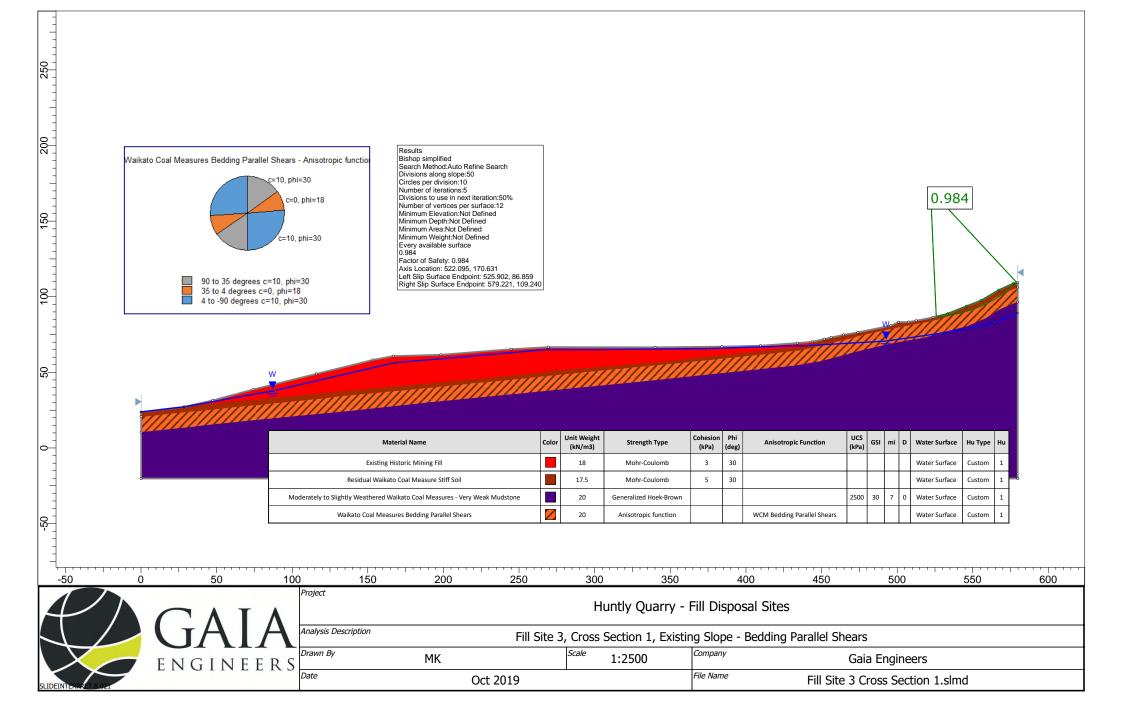


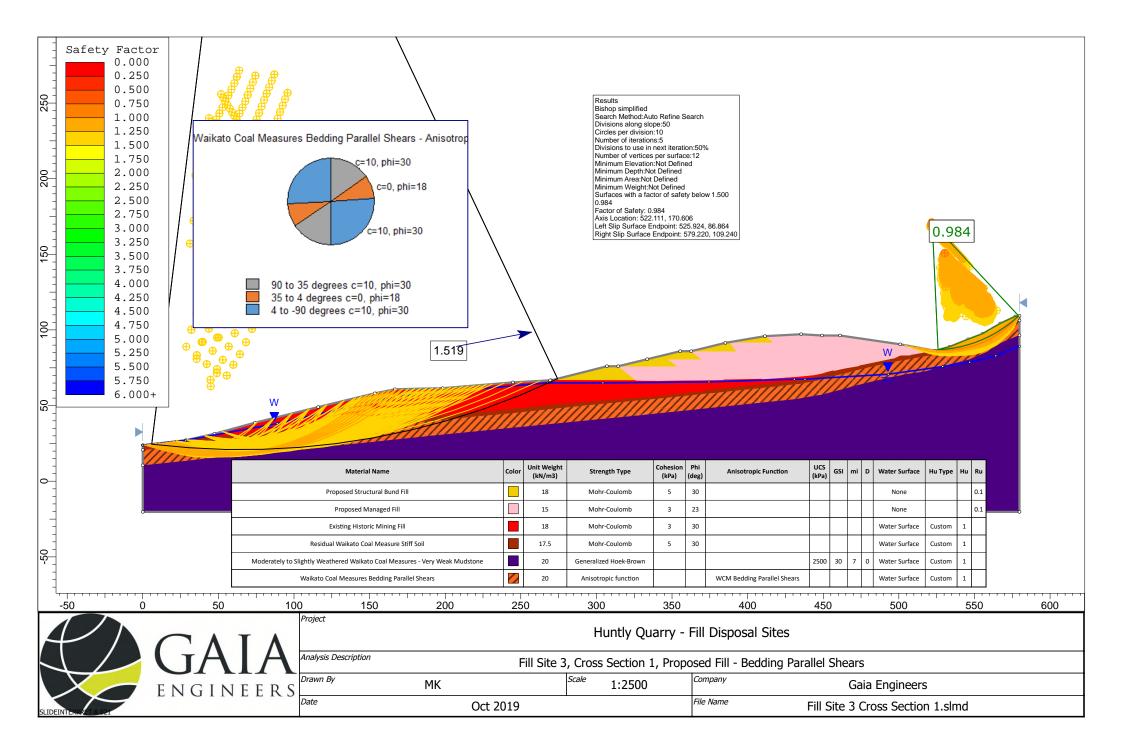

TP213 PROJECT: Huntly Quarry Disposal Sites

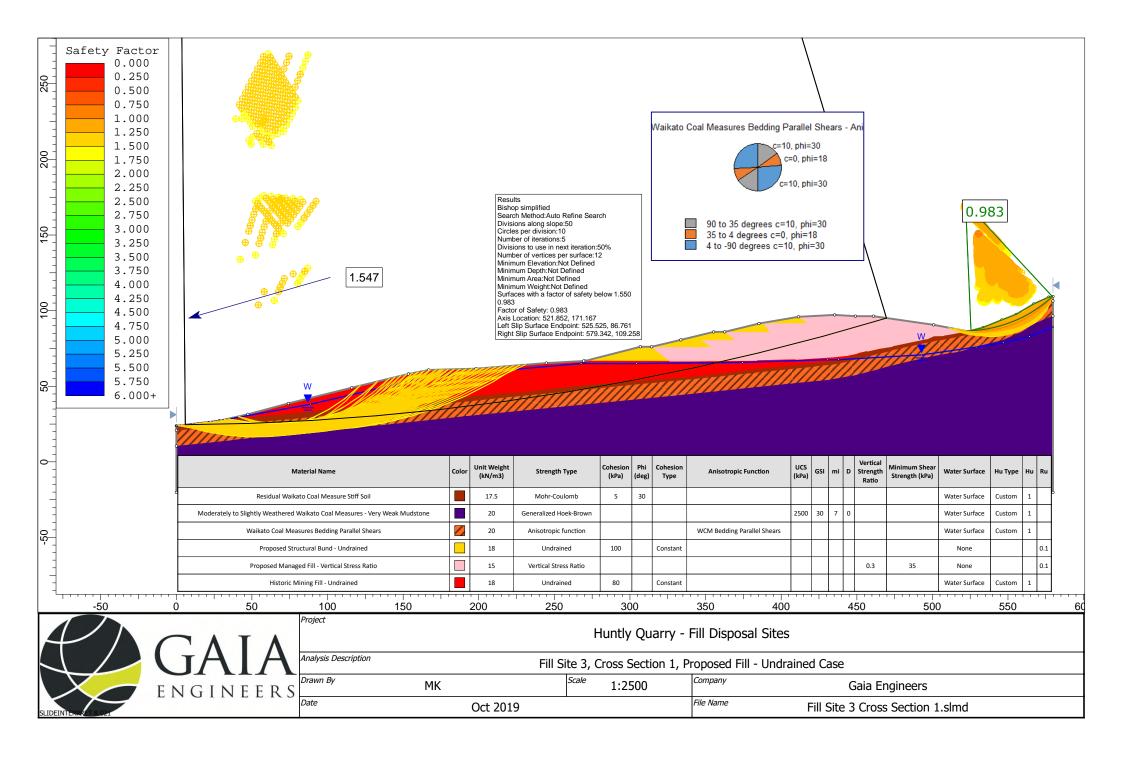


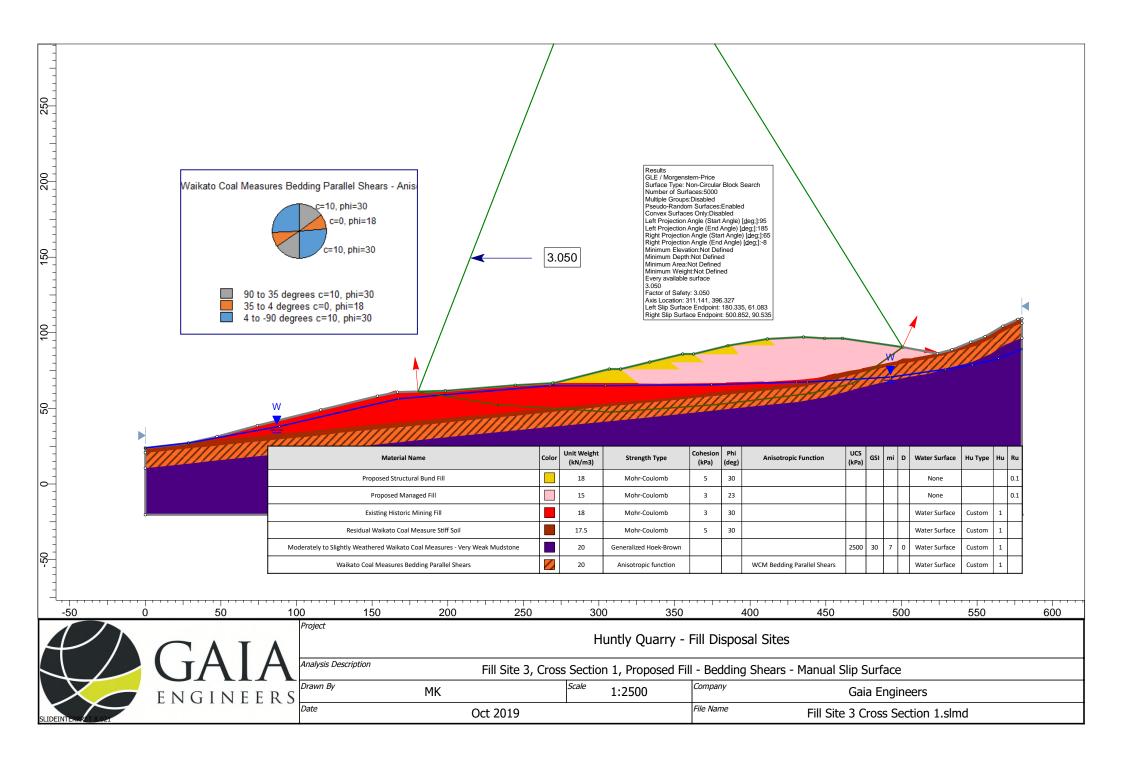


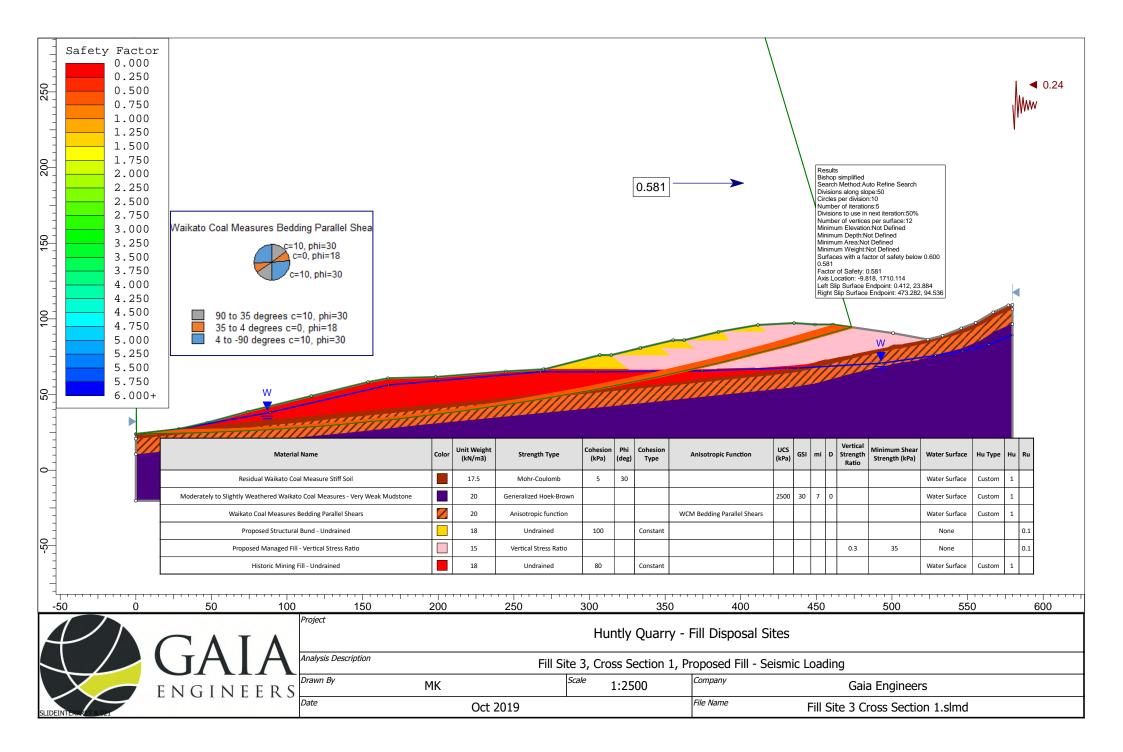

Appendix D Revised Limit Equilibrium Slope Stability Analyses & Seismic Displacement Calculation

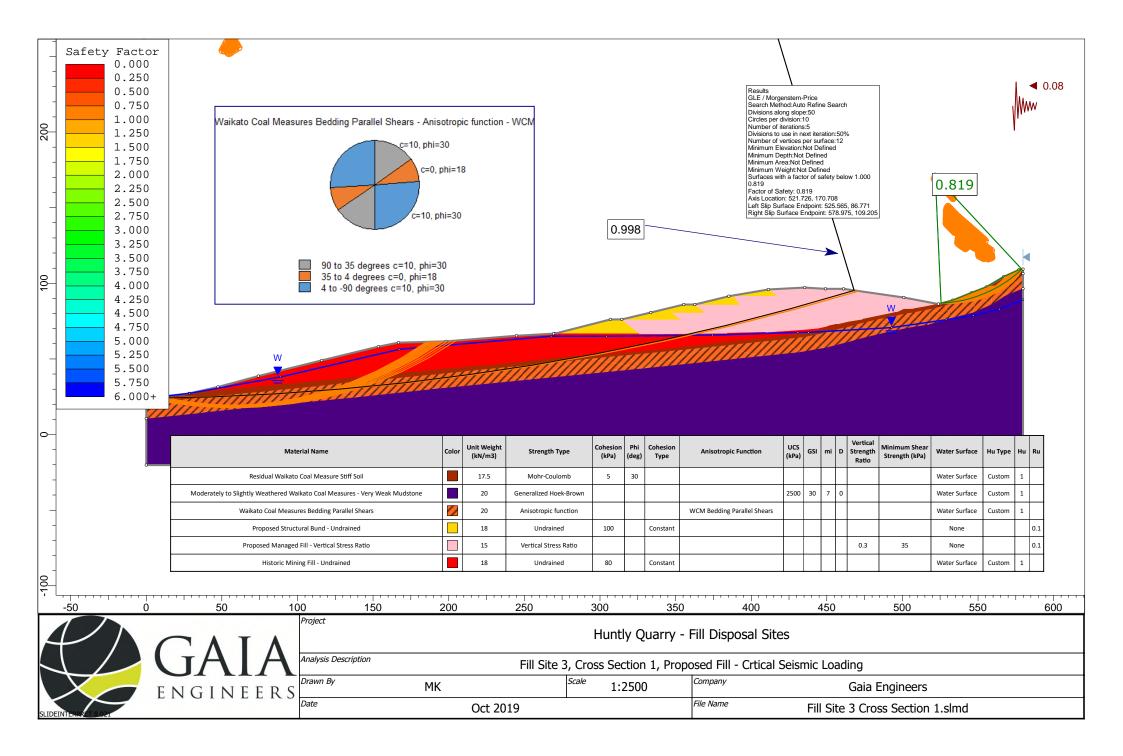


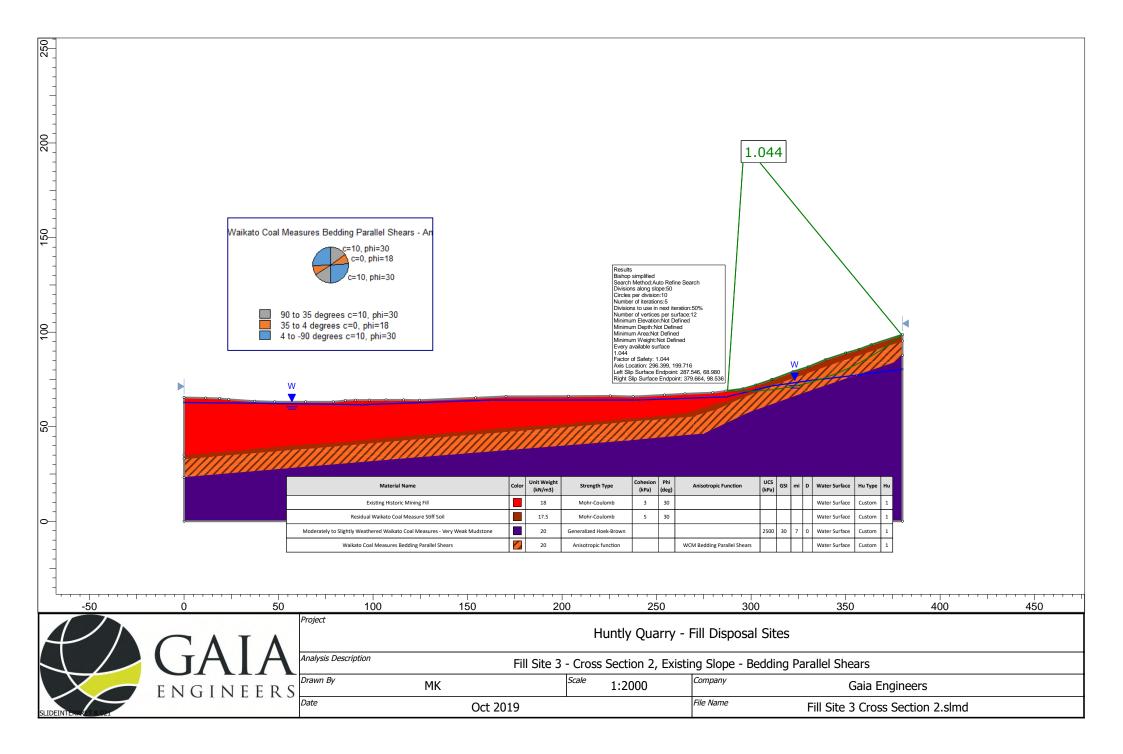


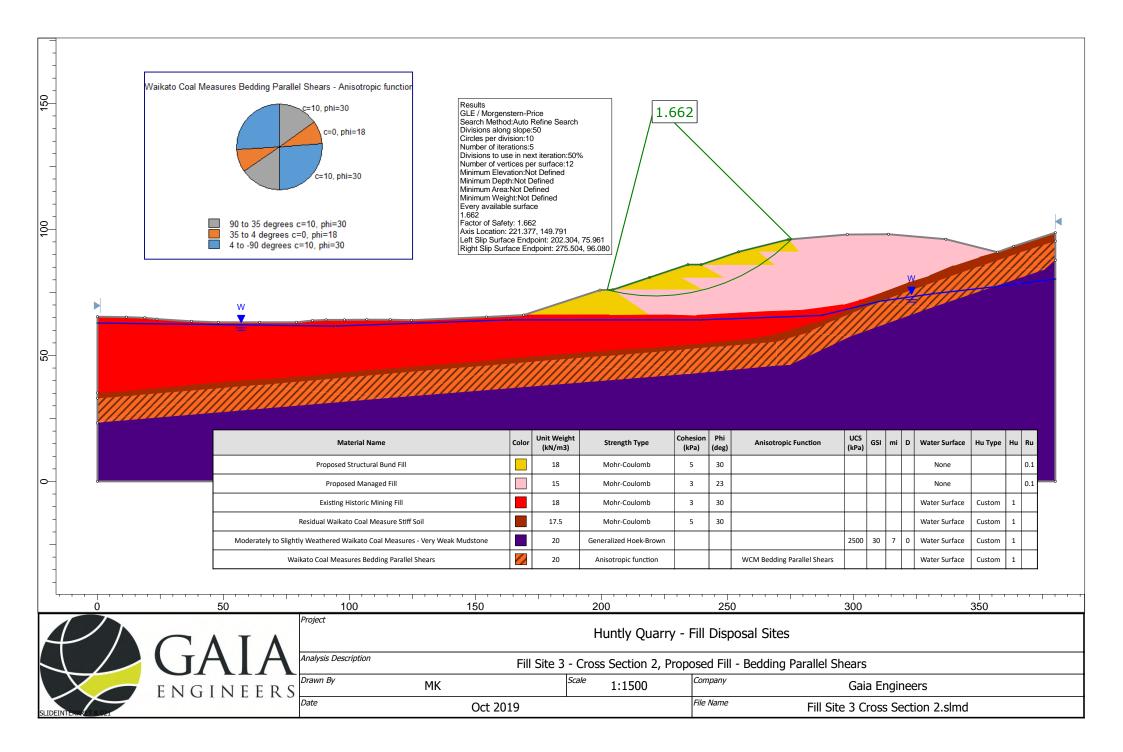


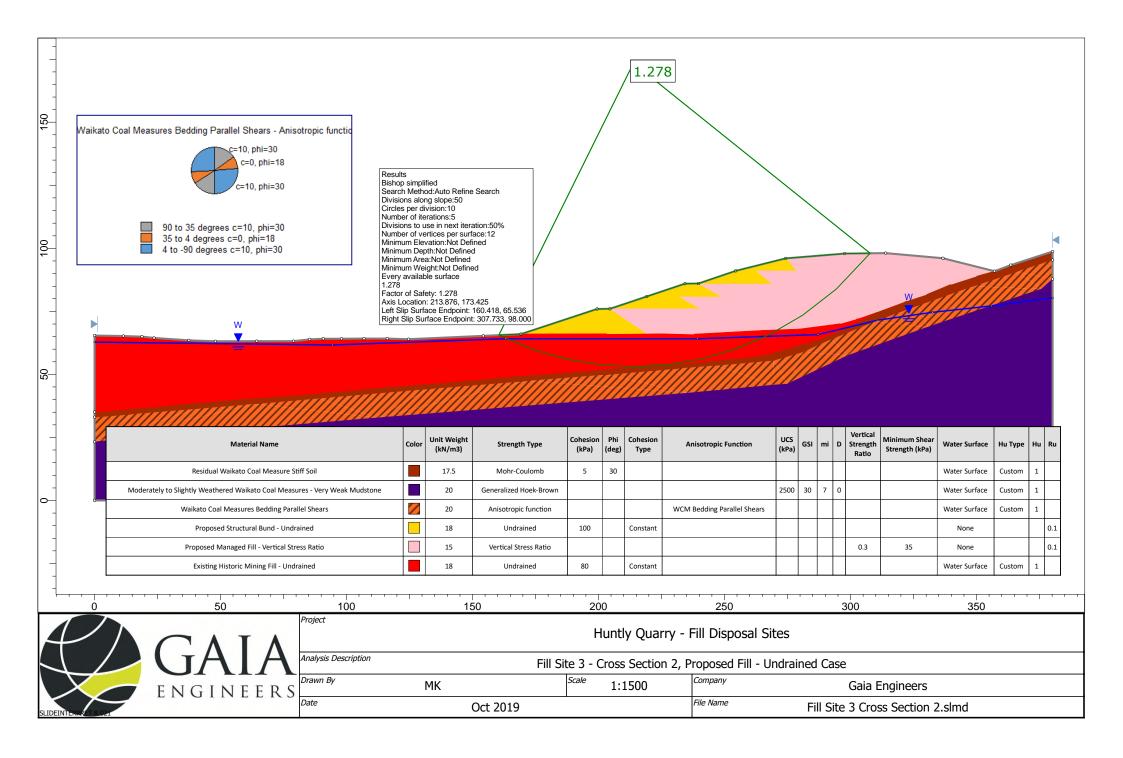


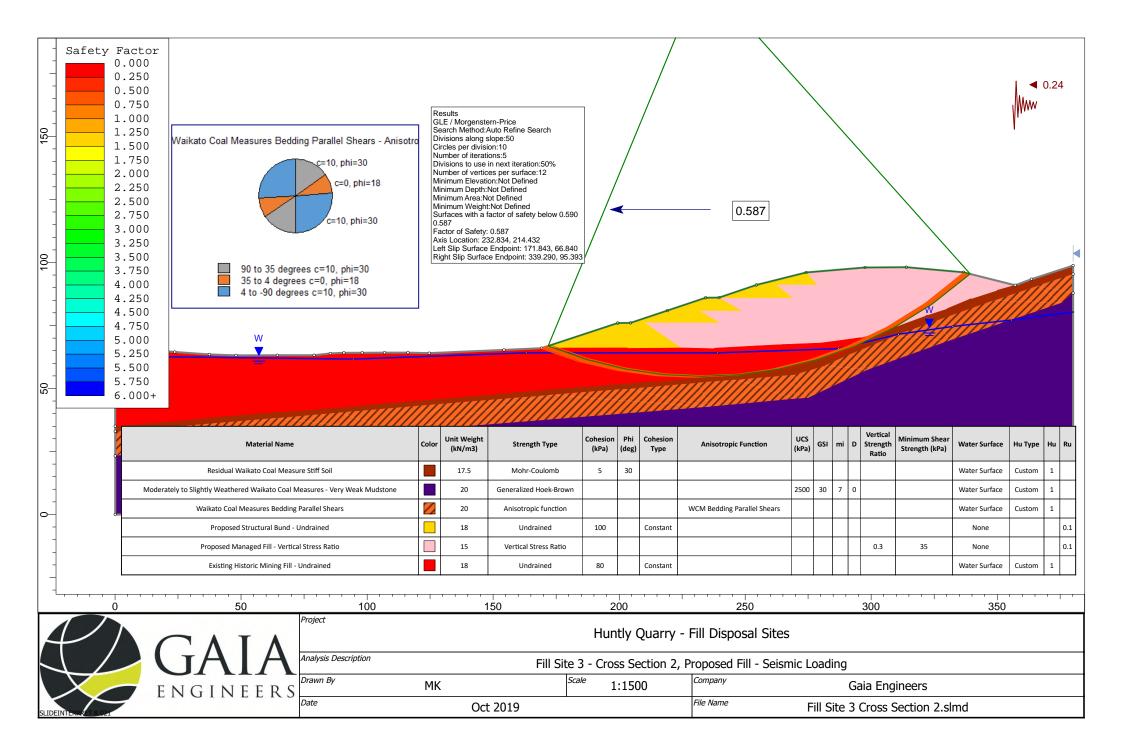


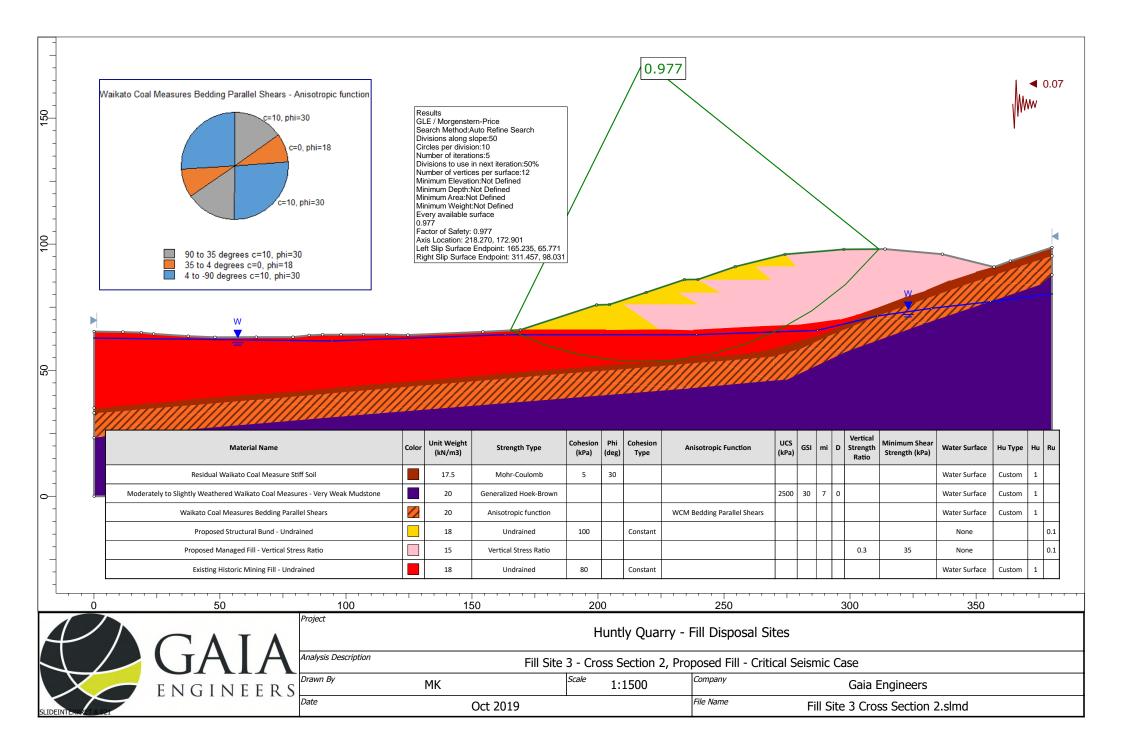


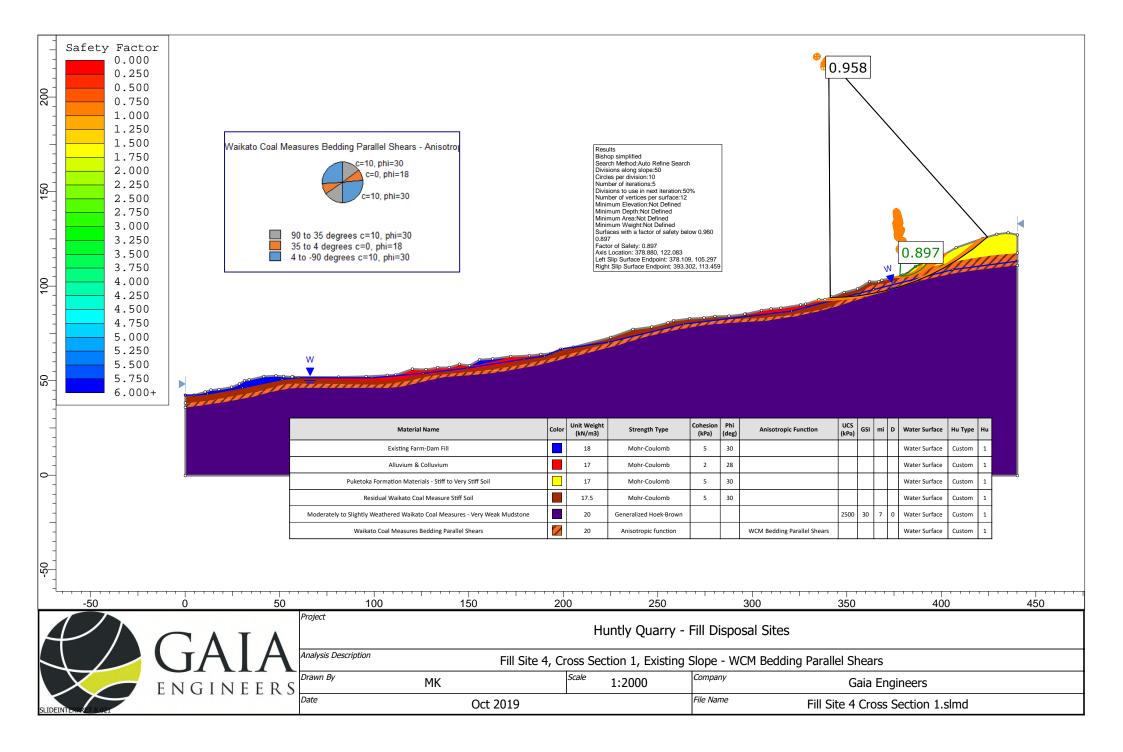


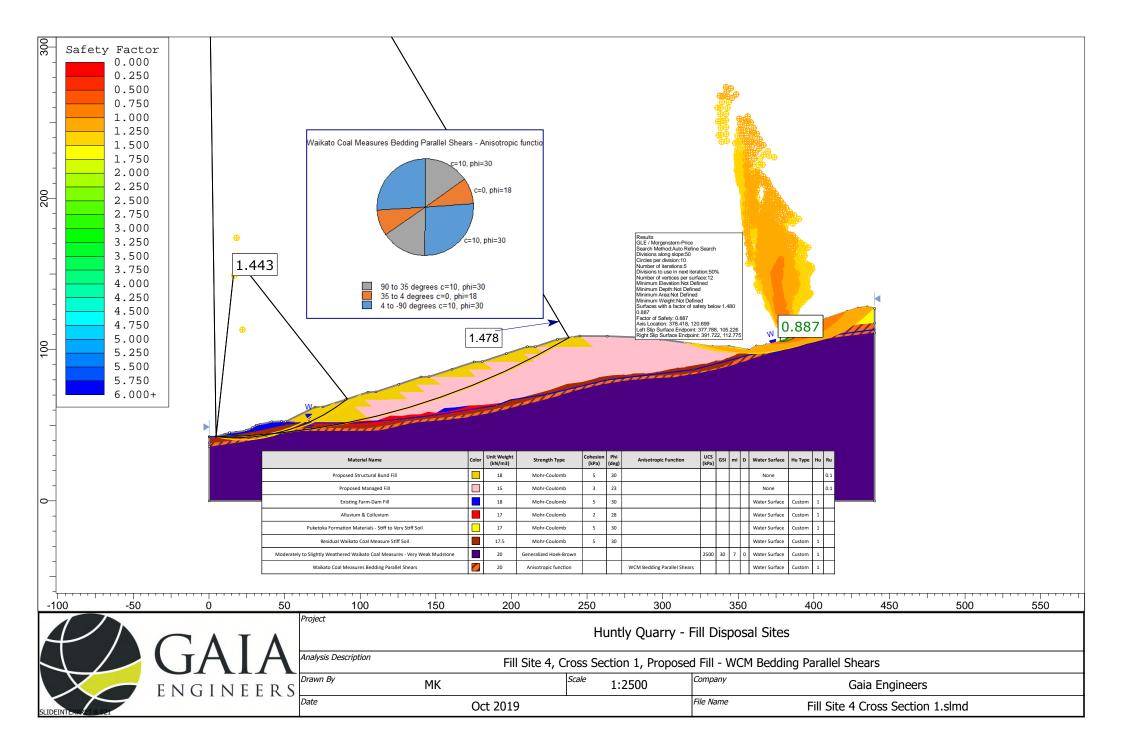


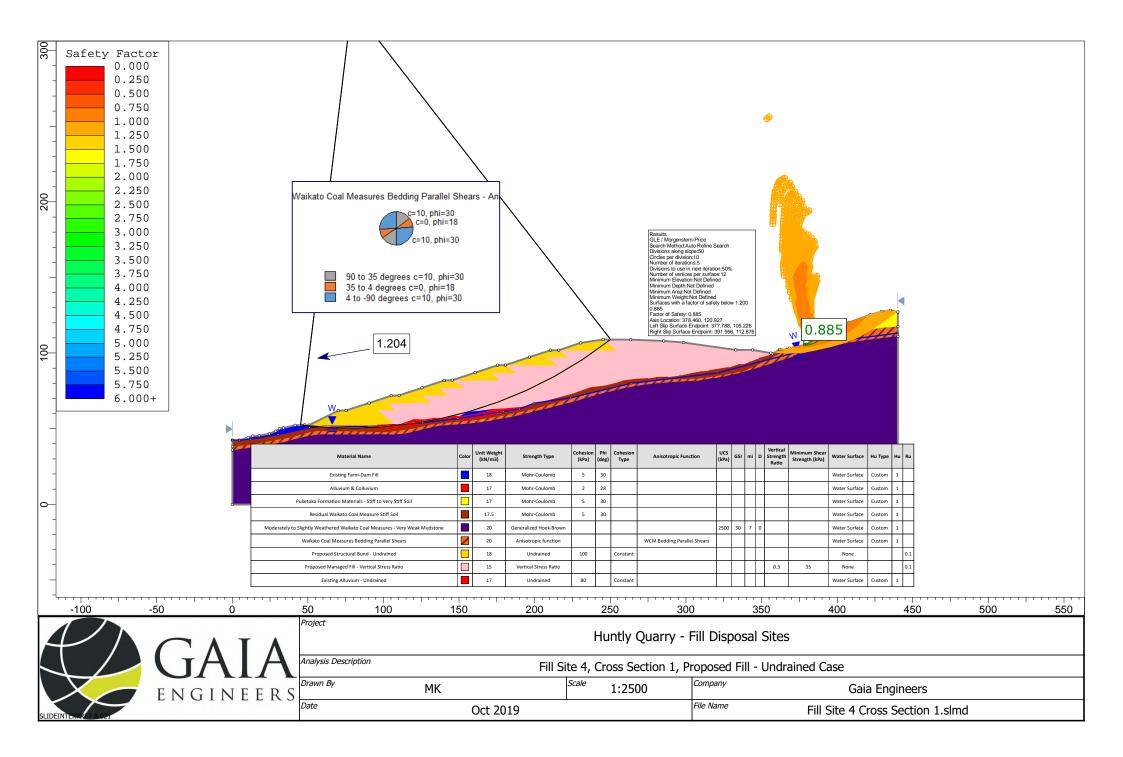


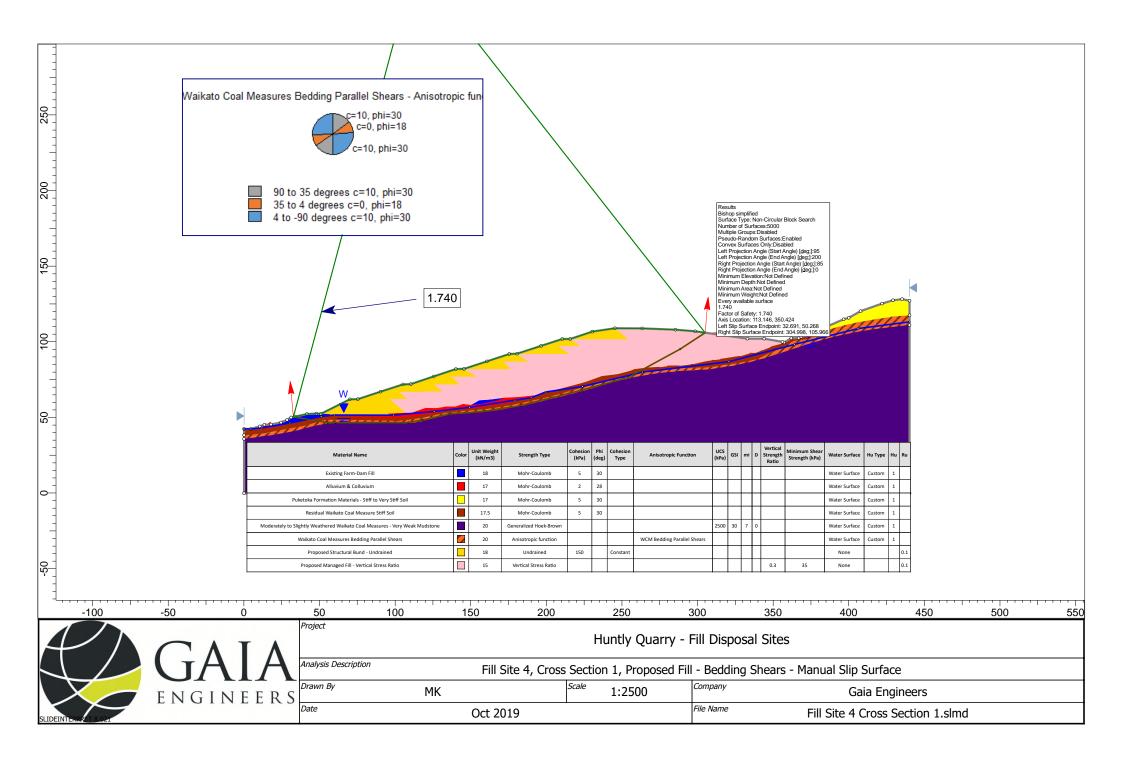


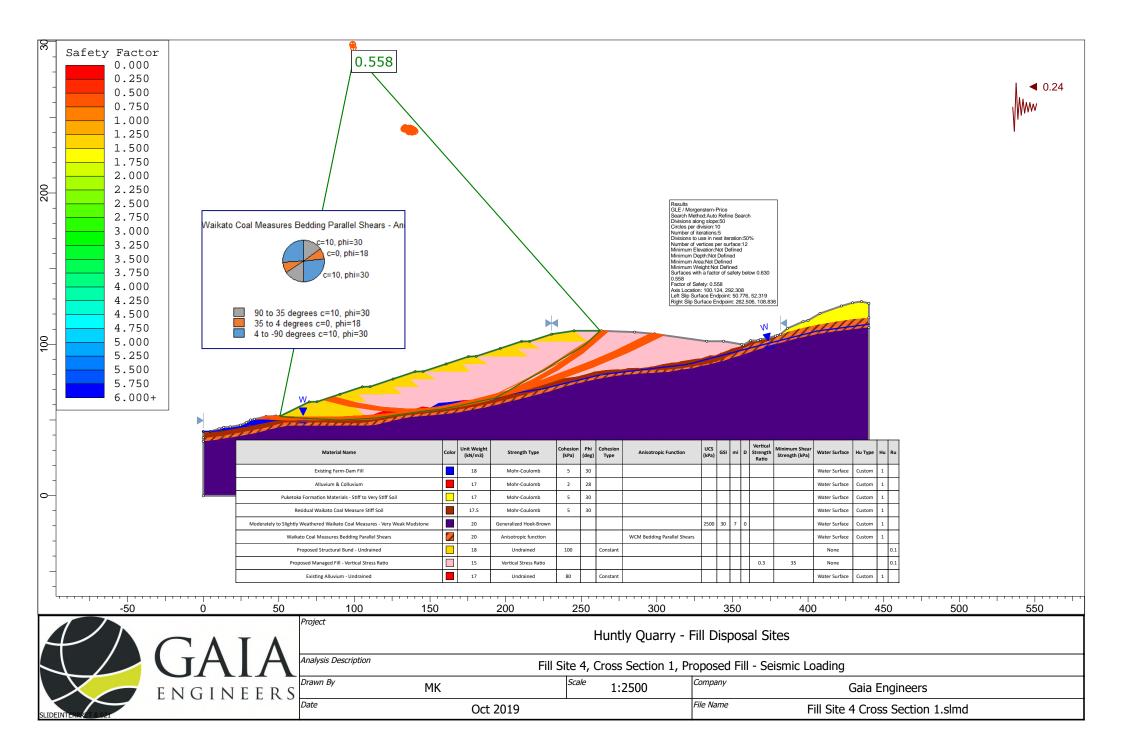


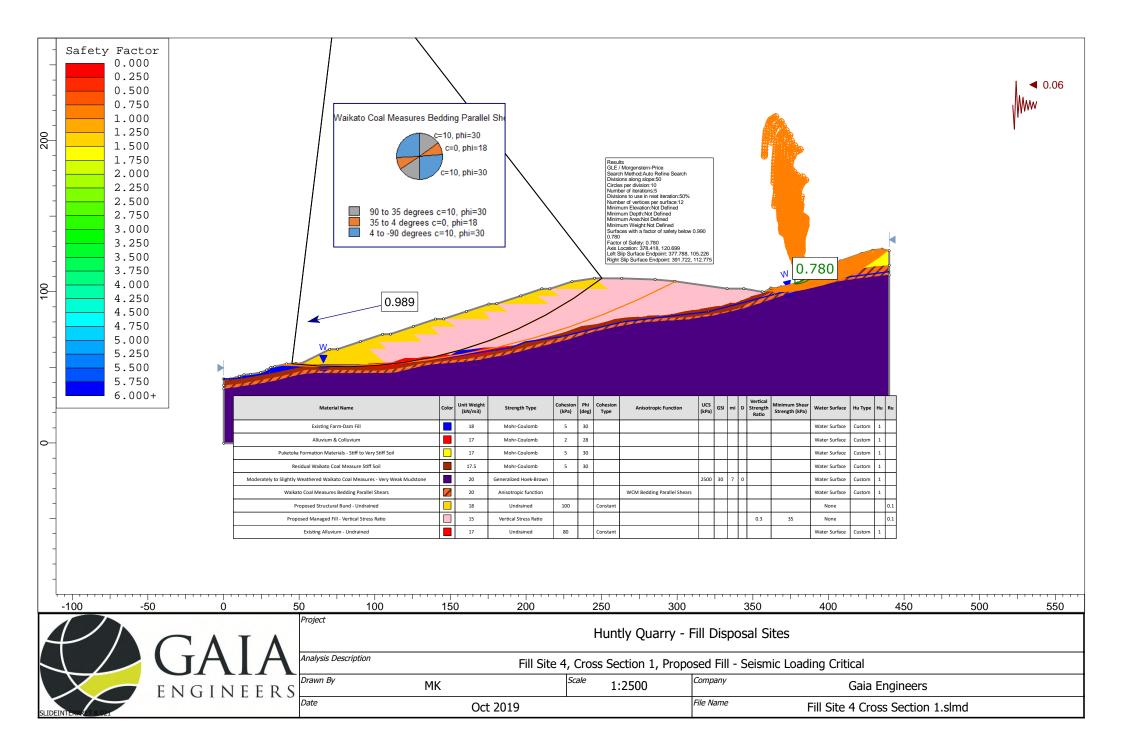


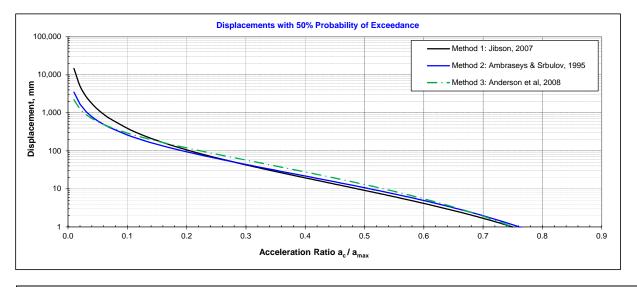



100 1 150 1			2.3	668	Bishop simplified Surface Type: Non-C Number of Surfaces Multiple Groups:Diss Pseudo-Random Su Convex Surfaces OT Left Projection Angle Right Projection Angle Right Projection Ang Minimum Elevation:1 Minimum Area:Not D Minimum Area:Not D Min	abled rfaces:En: hly:Disable (Start An (End Ang le (Start Å le (End An Not Defined Defined t Defined t Defined t Defined 18, 300.52 dpoint: 116	abled ed gle) [de ingle) [d ingle) [d ed 34 5.214, 6	eg;]:95 g;]:188 teg;]:85 eg;]:-12		•		W				
20									P							
-																
		Material Name	Colo	r Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Anisotropic Function	UCS (kPa)	GSI	mi D	Water Surface	Hu Type	Hu	Ru	
-												None			0.1	
1 -		Proposed Structural Bund Fill		18	Mohr-Coulomb	5	30					Hone				
		Proposed Structural Bund Fill Proposed Managed Fill		•	Mohr-Coulomb Mohr-Coulomb	5	30 23					None			0.1	
0-	0	· · · · · · · · · · · · · · · · · · ·		•									Custom	1	0.1	
0		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil		15 18 17.5	Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb	3	23					None Water Surface Water Surface	Custom		0.1	0
0		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil Moderately to Slightly Weathered Waikato Coal Measures - Very Weak N	Mudstone	15 18 17.5 20	Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Generalized Hoek-Brown	3	23 30		2500	30	7 0	None Water Surface Water Surface Water Surface	Custom Custom	1	0.1	
		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil		15 18 17.5 20	Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb	3	23 30	WCM Bedding Parallel Shears	2500	30	7 0	None Water Surface Water Surface	Custom	1	0.1	
		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil Moderately to Slightly Weathered Waikato Coal Measures - Very Weak N Waikato Coal Measures Bedding Parallel Shears	: Mudstone	15 18 17.5 20	Mohr-Coulomb Mohr-Coulomb Generalized Hoek-Brown Anisotropic function	3	23 30		2500			None Water Surface Water Surface Water Surface	Custom Custom Custom	1 1 1	0.1	
		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil Moderately to Slightly Weathered Waikato Coal Measures - Very Weak N	Mudstone	15 18 17.5 20	Mohr-Coulomb Mohr-Coulomb Generalized Hoek-Brown Anisotropic function	3 3 5	23 30 30	250	2500	30		None Water Surface Water Surface Water Surface	Custom Custom Custom	1	0.1	
		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil Moderately to Slightly Weathered Waikato Coal Measures - Very Weak N Waikato Coal Measures Bedding Parallel Shears United Statement of the second stateme	: Mudstone	15 18 17.5 20 20	Mohr-Coulomb Mohr-Coulomb Generalized Hoek-Brown Anisotropic function 200 Huntly	3 5 Quarr	23 30 30 y - F	250 ill Disposal Sites	-	300)	None Water Surface Water Surface Water Surface	Custom Custom Custom	1 1 1	0.1	
		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil Moderately to Slightly Weathered Waikato Coal Measures - Very Weak N Waikato Coal Measures Bedding Parallel Shears UNATION OF THE Project Analysis Description	Mudstone	15 18 17.5 20 20	Mohr-Coulomb Mohr-Coulomb Generalized Hoek-Brown Anisotropic function 200 Huntly Cross Section 2, P	3 3 5 Quarr	23 30 30 y - F	250 ill Disposal Sites - Bedding Shears - N	-	300 300) lip Su	None Water Surface Water Surface Water Surface Water Surface	Custom Custom Custom	1 1 1	0.1	
		Proposed Managed Fill Existing Historic Mining Fill Residual Waikato Coal Measure Stiff Soil Moderately to Slightly Weathered Waikato Coal Measures - Very Weak N Waikato Coal Measures Bedding Parallel Shears United Statement of the second stateme	: Mudstone	15 18 17.5 20 20	Mohr-Coulomb Mohr-Coulomb Generalized Hoek-Brown Anisotropic function 200 Huntly	3 3 5 Quarr	23 30 30 y - F	250 ill Disposal Sites	-	300 300) lip Su	None Water Surface Water Surface Water Surface	Custom Custom Custom	1 1 1		









Sliding Block Displacement Analysis

DCLS Event

Symbol		Print Da	ate: 16-Jan-20
Symbol	Value		
Symbol	Value	1	····· ····
	value	Units	Comment
M _w	5.8		For Huntly from Bridge Manual Table 6A.1
			For Huntly from Bridge Manual Table 6A.1
S	С		$T_n < 0.6 \text{ sec}$
IL	2]	From Bridge Manual Table 2.1
R	4		For annual probabilities of exceedance of 1 in 500 years
-	0.00		from NZS 1170.5 Table 3.5
-		-	Estimate from limit equilibrium slope stability analysis
	-		Bridge Manual uses 50% (Clause 6.3.2)
I _s	0.18	S	Used in Bray & Travasarou 2007
-			From Bridge Manual Section 6.2.1
		0	From Bridge Manual Section 6.2.1
-			Used in RRU and Anderson et al. Taken as 1.0 x a _{max}
0	-	-	Used in Bray & Travasarou 2007. Taken as 1.5 x T _s
,		5	Used in Bray & Travasarou 2007 with consideration of depth reduction factor $r_{\rm d}$
Zn	1.036		$Z_n = NORMINV((1-p/100),0,1) - Excel Function$
,			Uses M _w - moment magnitude
d _{am}			Based on M_s between 6.6 to 7.2 ($M_s > M_w$)
	63	mm	Uses M _s - surface wave magnitude
	-		
d _{br}	298	mm	
d	02	mm	Upper bound value from 3 methods - Based on Bridge Manual Section 6.1.2 & 6.3.4
-			200% of displacement from one ULS event, Not relevant for MCE event
∽200%	100		Based on Bridge Manual Section 6.3.4
	$\begin{array}{c} R_u\\ a_c\\ p\\ T_s \end{array}$ f a_max v_o 1.5T_s (1.5T_s) a_r z_n \\ d_j\\ d_{am}\\ d_{as}\\ d_{rru}\\ d_{an} \end{array}	$\begin{array}{c c} C_{o,1000} & 0.23 \\ S & C \\ IL & 2 \\ R_u & 1 \\ a_c & 0.06 \\ p & 15 \\ T_s & 0.18 \\ \hline f & 1.33 \\ a_{max} & 0.24 \\ V_o & 0.24 \\ 1.5T_s & 0.27 \\ S_a(1.5T_s) & 0.42 \\ a_r & 0.25 \\ z_n & 1.036 \\ \hline d_{am} & 356 \\ d$	$\begin{array}{c c} C_{o,1000} & 0.23 \\ S & C \\ IL & 2 \\ R_u & 1 \\ a_c & 0.06 \\ p & 15 \\ \gamma & 0.18 \\ r \\ $

References:

 Jibson R W. 2007. Regression models for estimating coseismic landslide displacement. *Engineering Geology* Vol 91, Issues 2-4, pp. 209-218.
 Ambraseys N, and Srbulov M. 1995. Earthquake Induced Displacements of Slopes, *Soil Dynamics and Earthquake Engineering*, Vol. 14, 59 - 71.

Anderson D G, Martin G R, Lam I, and Wang J N. 2008. Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes and Embankments. *NCHRP Report 611*, Transportation Research Board.